设f(x)是定义在R上的偶函数,当x<0时,f(x) xf′(x)<0且f(-4)=0,则不等式xf(x)>0的解集为

百度网友fb34739
推荐于2016-09-30 · TA获得超过2299个赞
知道大有可为答主
回答量:1178
采纳率:100%
帮助的人:475万
展开全部
解:设g(x)=xf(x),则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=xf′(x)+f(x)<0,
∴函数g(x)在区间(-∞,0)上是减函数,
∵f(x)是定义在R上的偶函数,
∴g(x)=xf(x)是R上的奇函数,
∴函数g(x)在区间(0,+∞)上是减函数,
∵f(-4)=0,
∴f(4)=0;
即g(4)=0,g(-4)=0
∴xf(x)>0化为g(x)>0,
设x>0,故不等式为g(x)>g(4),即0<x<4
设x<0,故不等式为g(x)>g(-4),即x<-4
故所求的解集为(-∞,-4)∪(0,4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式