已知奇函数f(x)=ax3+bx2+cx(a≠0)在x=1处取得极大值2.(1)求函数y=f(x)的解析式;(2)对于区间[

已知奇函数f(x)=ax3+bx2+cx(a≠0)在x=1处取得极大值2.(1)求函数y=f(x)的解析式;(2)对于区间[-2,2]上任意两个自变量的值x1,x2都有|... 已知奇函数f(x)=ax3+bx2+cx(a≠0)在x=1处取得极大值2.(1)求函数y=f(x)的解析式;(2)对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,求实数c的最小值. 展开
 我来答
义芫华0gK5d2
2014-08-20 · TA获得超过169个赞
知道答主
回答量:144
采纳率:100%
帮助的人:61.7万
展开全部
(1)∵奇函数f(x)=ax3+bx2+cx(a≠0)在x=1处取得极大值2,奇函数f(液行-x)=-f(x),解得b=0,
可得f′(x)=3ax2+c
由题意得
b=0
f′(1)=0
f(1)=2
解得,
a=?1
b=0
c=3

∴f(x)=-x3+3x;
(2)|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,
根据(谨裤1)可得f(x)=-x3+3x;
求导得f′(x)=-3x2+3=-3(x2-1)令f′(x)=0,可得x=1或-1,
当f′(x)>0即-1<x<1,f(x)为增函闹晌哗数,
当f′(x)<0时即x>1或x<-1,f(x)为减函数,
f(x)在x=1处取极大值f(1)=2,在x=-1处取得极小值f(-1)=-,2;
f(-2)=2,f(2)=-2,
∴f(x)max=2,f(x)min=-2,
要使对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,
∴|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,
故c的最小值为4;
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式