已知数列{an}的前n项和为sn=n²+2n,数列{bn}是正项等比数列

已知数列{an}的前n项和为sn=n²+2n,数列{bn}是正项等比数列,且满足a1=2b1,b3(a3-a1)=b1,n∈正实数(1)求数列{an}和{bn}... 已知数列{an}的前n项和为sn=n²+2n,数列{bn}是正项等比数列,且满足a1=2b1,b3(a3-a1)=b1,n∈正实数
(1)求数列{an}和{bn}的通项公式
(2)记cn=anbn,求数列{cn}的前n项的和
展开
 我来答
旧记忆21
2015-06-17
知道答主
回答量:21
采纳率:0%
帮助的人:4.5万
展开全部
bn=1/[(2n+1)²-1]
=1/(4n²+4n)
=1/4[1/n-1/(n+1)]
∴Tn
=(b1+b2+b3+……+bn)
=1/4[(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/n-1/n+1)]
=1/4[1-1/(n+1)]
=1/4[(n+1-1)/(n+1)
=n/4(n+1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式