f(x+y)=f(x)f(y) 且f'(0)=1 求f'(x)
2个回答
展开全部
解:∵f(x+y)=f(x)f(y)
∴令y=0,得f(x)=f(x)f(0)==>f(x)(f(0)-1)=0.........(1)
∵f'(0)=1............(2)
∴f(x)≠0
∴由(1)得f(0)-1=0
==>f(0)=1..........(3)
故f'(x)=lim(h->0)[(f(x+h)-f(x))/h]
(由导数定义得)
=lim(h->0)[(f(x)f(h)-f(x))/h]
=lim(h->0)[f(x)(f(h)-1)/h]
=f(x)lim(h->0)[(f(h)-1)/h]
=f(x)lim(h->0)[(f(h)-f(0))/h]
(由(3)式得)
=f(x)f'(0)
(由导数定义得)
=f(x)*1
(由(2)式得)
=f(x)
∴令y=0,得f(x)=f(x)f(0)==>f(x)(f(0)-1)=0.........(1)
∵f'(0)=1............(2)
∴f(x)≠0
∴由(1)得f(0)-1=0
==>f(0)=1..........(3)
故f'(x)=lim(h->0)[(f(x+h)-f(x))/h]
(由导数定义得)
=lim(h->0)[(f(x)f(h)-f(x))/h]
=lim(h->0)[f(x)(f(h)-1)/h]
=f(x)lim(h->0)[(f(h)-1)/h]
=f(x)lim(h->0)[(f(h)-f(0))/h]
(由(3)式得)
=f(x)f'(0)
(由导数定义得)
=f(x)*1
(由(2)式得)
=f(x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询