高中数学概率知识点总结是什么?
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件。
(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件。
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件。
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件。
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事。
相关介绍:
在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的集合称为基本空间。
随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素。
“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合{(1,1)}表示,“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合{(1,3),(3,1),(2,2)}表示。
如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。P(不可能事件)=0。在试验中此事件不可能发生。
如果把“点数之和小于40”看成一事件,它包含所有基本事件,在试验中此事件一定发生,称为必然事件。P(必然事件)=1。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究。