已知函数f(x)= cos^2x+ sin^2x,求f(x)
∫cosx/(sinx+cosx) dx=(1/2)(x+ln|sinx+cosx|) + C。(C为积分常数)
解答过程如下:
∫cosx/(sinx+cosx) dx
= (1/2)∫[(cosx+sinx)+(cosx-sinx)]/(sinx+cos)] dx
= (1/2)∫ dx + (1/2)∫(cosx-sinx)/(sinx+cosx) dx
= x/2 + (1/2)∫d(sinx+cosx)/(sinx+cosx)
= (1/2)(x+ln|sinx+cosx|) + C
扩展资料:
分部积分:
(uv)'=u'v+uv',得:u'v=(uv)'-uv'。
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx。
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式。
也可简写为:∫ v du = uv - ∫ u dv。
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c