R表示什么意思?
R表示的是拟合优度,它是用来衡量估计的模型对观测值的拟合程度。它的值越接近1说明模型越好。但是,你的R值太小了。
T的数值表示的是对回归参数的显著性检验值,它的绝对值大于等于ta/2(n-k)(这个值表示的是根据你的置信水平,自由度得出的数值)时,就拒绝原假设。
即认为在其他解释变量不变的情况下,解释变量X对被解释变量Y的影响是显著的。
F的值是回归方程的显著性检验,表示的是模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。若F>Fa(k-1,n-k),则拒绝原假设。
即认为列入模型的各个解释变量联合起来对被解释变量有显著影响,反之,则无显著影响。
如果,你只改R值,我想是可以看的出来的。你的F的值和T的值都是有问题的,如果只改R值,怎么可能在F的值和T的值都不合理的情况下,拟合优度却突然变的很高。
扩展资料
线性回归的回归系数:
一般地,要求这个值大于5%。对大部分的行为研究者来讲,最重要的是回归系数。年龄增加1个单位,文档的质量就下降 -.1020986个单位,表明年长的人对文档质量的评价会更低。
这个变量相应的t值是 -2.10,绝对值大于2,p值也<0.05,所以是显著的。结论是,年长的人对文档质量的评价会更低,这个影响是显著的。
相反,领域知识越丰富的人,对文档的质量评估会更高,但是这个影响不是显著的。这种对回归系数的理解就是使用回归分析进行假设检验的过程。
参考资料来源:百度百科-线性回归