SPSS多元线性回归的结果如何解读?
2023-06-20 · 百度认证:SPSSAU官方账号,优质教育领域创作者
多元线性回归的结果如何解读?
举个例子进行说明。
在“工资影响因素”的调查问卷中,调查了每个人的起始工资、工作经验、受教育年限、受雇月数、职位等级以及当前工资六个方面。目的是建立以当前工资为因变量的回归模型,并得出结论。
模型结果
从上表可知,将起始工资,受教育年限,工作经验,职位等级作为自变量,而将当前工资作为因变量进行线性回归分析,从上表可以看出,模型公式为:当前工资=-41.634 + 0.425*起始工资 + 6.176*受教育年限-0.051*工作经验 + 29.819*职位等级。
上图所示,回归方程的常数项约为-41.63,以及起始工资、受教育年限、工作经验以及职位等级的非标准化系数分别为0.425、6.176、-0.051、29.819。表中4个变量的p值均小于0.05,并且VIF值均正常,因此4个变量可以显示在模型中。
起始工资、受教育年限、工作经验以及职位等级的标准化系数分别为0.163、0.320、-0.096、0.415. 标准化系数一般可用于比较自变量对Y的影响程度。系数值越大说明该变量对Y的影响越大。可以看出模型中职位等级对当前工资影响较大。
总结来看,模型公式为:当前工资=-41.634 + 0.425*起始工资 + 6.176*受教育年限-0.051*工作经验 + 29.819*职位等级(案例数据分析结果仅供参考)。
上图为残差正态分布图(P-P图),由上图可以看出残差的分布符合大致正态分步。说明回归结果就数据而言是较为可靠的。
SPSS 多元线性回归结果中,结果表格列出了自变量的显著性检验结果,结果输出表格中列出了回归模型的偏回归系数(B)及其标准误(Std.Error),标准化偏回归系数(Beta),回归系数检验的t统计量及其P值(Sig.)。
系数模型下的1表示模型的序号。
1、T表示使用单样本T检验的T值。
2、sig表示T检验的显著性检验P值,小于0.05的则说明自变量对因变量具有显著影响。
3、B表示各个自变量在回归方程中的偏回归系数,负值表示自变量对因变量有显著的负向影响。
扩展资料:
由于每个自变量的量纲和取值范围不同,基于偏回归系数B并不能反映各个自变量对因变量影响程度的大小。标准化偏回归系数其意义在于通过对偏回归系数进行标准化,从而可以比较不同自变量对因变量的作用大小。标准化偏回归系数数值越大表示对自变量的影响更大。
参考资料: