0到底是不是偶数????????
是。
0是一个特殊的偶数。它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。0是介于-1和1之间的整数,是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。0不能作为分母出现,0的所有倍数都是0,0不能作为除数。
0是极为重要的数字,关于0这个数字概念在其它地区很早就有。公元前3000年,巴比伦人就已经懂得使用零来避免混淆。古埃及早在公元前2千年就有人在记帐时用特别符号来记载零。玛雅文明最早发明特别字体的0。玛雅数字中0以贝壳模样的象形符号代表。
扩展资料
关于奇数和偶数,有下面的性质:
1、两个连续整数中必有一个奇数和一个偶数;
2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数;
3、奇岁颂数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;
4、若a、b为整数乎迹郑,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数;
5、n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数州掘;
6、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8;
7、奇数的平方除以2、4、8余1;
8、 任意两个奇数的平方差是2、4、8的倍数
9、奇数除以2余数为1
参考资料来源:百度百科-偶数
参考资料来源:百度百科-0
0是偶数。
0是一个特殊的偶数,既是正偶数与负偶数的分界线,又是正奇数与负奇数亮型的分水岭。
偶数是能够被2所整除的整数。
若一个数是2的倍数,它就是偶数,可表示为2n;若非,它就是奇数,可表示为2n+1(n为整数),旁吵即奇数除以二的余数是一。
扩展资料
“ 0”的性质
(1)0是一个数,并且是一个整数,但0不是自然数,它比一切自然数都小。
(2)在十进制记数法中,0起运键侍占位的作用。
(4)0是任意自然数的倍数。
(5)任何数与0相加,它的值不变,即a+0=0+a=a。
(6)任何数减0,它的值不变,即a-0=a。
(7)相同的两个数相减,差等于0,即a-a=0。
(8)任何数与 0相乘,积等于0,即a×0=0×a=0。
(9)0被非零的数除,商等于0,即如果 a≠0,那么0÷a=0。
(10)0不能作除数。例如:3÷0,0÷0,这类式子是没有意义的。
大部分老师见了教材都无言以对,但心中却总有些不同意。有些老师也提出:教科书49页最后一段也明确注明,注意:为了方便,以后在研究约数和倍数时,我们所说的数一般指自然数,不包括0。
到底最小的偶数是0还是2 呢?虽然教科书明确指出0是偶数,但从未明确指明最小的偶数就是0。笔者认为:0是一个特殊的数,所以教材明确指出在研究约数和倍数时,不包括0。当然偶数是约数和倍数的扩展分枝,也应该不包括0。所以让我感觉教材是前后矛盾的,前面说在研究数的整除时,不包括0;但到了偶数概念时,又明确指出0也是偶数。
如果0是最小的偶数,那么许多题目将变得毫无意义。如:教材80页练习十六第4题的(1)“既能被6整除,又能被9整除的数,最小的是多少?绝大多数都认为是6和9的最小公倍数,结果是“18”。但另有一种观点认为:此题是求能被6和9整除的最小的数,因为0既能被6整除,又能被9整除,所以结果应该是0。此题如是考察0则意义不大。但如0是最小的偶数,那么既能被6整除,又能被者差9整除的数,最小的是0,就很正常了。
0是最小的偶数,那么到初中的负数的出现后,0还是最小的偶数吗?当负数出现后,最小的偶数是并不存在的,就像最大的自然数也并找不到。笔者有一种认识,教材规定了0是偶数,这一性质也是值得商榷的。因为0也能被2 整除,所以0也是偶数。那么0也能被任何自然数整除,0又是一个什么数呢?我们知道:一种特性,必定是区别于其他事物的;一种特性,在同类事物中也肯定有共同的外在或内在的表现;事物的本质属性必定是与其他类事物的本质属性是相互排斥的,如果不相互排斥,那么还不混为同一类去。就像最近中央领导说的:“哪里有黑势力,那里就肯定不够红,红黑是不能共容的。”如果说0是偶数,那么0与其他偶数是有较大的区别的,用上面三点去分析,也觉得0是偶数规定的太过牵强。
所以笔者认为,在小学数学中,把0 规定为偶数,是不恰当的,应该把0在整除中的特殊地位明确规定,以避免一些不必要的争论。
“0”到底是不是自然数 ???
随着九年义务教备逗育小学数学教材(试用修订版)的陆续使用,我们接到一些小学数学教师、家长和学生的来信、来电,询问0是否是自然数的问题。现予以解答如下:
从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。
目前,国外的数学界大部分都规定0是自然数。为了国际交流的方首滚皮便,1993年颁布的《中华人民共和国国家标准》(GB 3100~3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,我们的教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。
但是,在小学阶段的“整除”部分,仍然不考虑自然数0,因而在约数、倍数等概念中都不包括0。另外,一般情况下我们不说数0是几位数,所以最小的一位数是1。