线性代数求特征值有什么化简方法吗?

 我来答
简单生活Eyv
2021-08-12 · TA获得超过1万个赞
知道小有建树答主
回答量:1547
采纳率:100%
帮助的人:25.6万
展开全部

R1+r2

R3-2r2

也只能得出两个0,这样应该已经是最简单的算法了。因为特征值一般比较简单,所以三次方程也可以快速写成因式相乘的形式的。

这题求得的三次方程式入^3+6入^2+11入+6=0。通过特殊值,可以轻易知道入=-1时方程成立。

那么三次方程肯定能抽出(入+1)

可以变为入(入^2+6入+5)+6(入+1)=0

(入+1)(入^2+5入+6)=0

(入+1)(入+2)(入+3)=0

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值。

第三步:对于的每一个特征值,求出齐次线性方程组

帐号已注销
2021-01-17 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

R1+r2

R3-2r2

也只能得出两个0,这样应该已经是最简单的算法了。

因为特征值一般比较简单,所以三次方程也可以快速写成因式相乘的形式的。

这题求得的三次方程式入^3+6入^2+11入+6=0.

通过特殊值,可以轻易知道入=-1时方程成立。

那么三次方程肯定能抽出(入+1)

可以变为入(入^2+6入+5)+6(入+1)=0

(入+1)(入^2+5入+6)=0

(入+1)(入+2)(入+3)=0

扩展资料:

如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν

其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。

当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为A矩阵未必是对称的。

参考资料来源:百度百科-特征值

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1852481004a
2019-07-02 · 超过10用户采纳过TA的回答
知道答主
回答量:13
采纳率:100%
帮助的人:9.1万
展开全部
R1+r2
R3-2r2
也只能得出两个0,这样应该已经是最简单的算法了。望采纳
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式