求这道题的解题思路,谢谢
展开全部
分析:①首先过点F作FM⊥BC于M.作FN⊥AB于N,连接BF,根据角平分线的性质,可得FM=FN,又由在Rt△ABC中,∠ACB=90°,∠B=60°,求得∠NEF=75°=∠MDF,又由∠闹轮毁DMF=∠ENF=90°,利用AAS,即可证桐碧得△DMF≌△ENF,由全等三角形的对应边相等,即可证得FE=FD;
过点F作FM⊥BC于M.作FN⊥AB于N,连接BF,
∵F是角平分线交点,
∴BF也是角平分线,
∴MF=FN,∠DMF=∠ENF=90°,
∵在Rt△ABC中,∠ACB=90°,∠ABC=60°,
∴∠BAC=30°,
∴∠液备DAC=
1/2∠BAC=15°,
∴∠CDA=75°,
∵∠MFC=45°,∠MFN=120°,
∴∠NFE=15°,
∴∠NEF=75°=∠MDF,
在△DMF和△ENF中,
请点击“采纳为答案”
过点F作FM⊥BC于M.作FN⊥AB于N,连接BF,
∵F是角平分线交点,
∴BF也是角平分线,
∴MF=FN,∠DMF=∠ENF=90°,
∵在Rt△ABC中,∠ACB=90°,∠ABC=60°,
∴∠BAC=30°,
∴∠液备DAC=
1/2∠BAC=15°,
∴∠CDA=75°,
∵∠MFC=45°,∠MFN=120°,
∴∠NFE=15°,
∴∠NEF=75°=∠MDF,
在△DMF和△ENF中,
请点击“采纳为答案”
展开全部
过F作FG⊥AB、FI⊥BC、FH⊥扮纤腔AC(OI在OD右边)
∠FGE=90°=∠FID
证明:
因为AD、CE是△ABC的角平分线
所以FG=FI=FH(角平分线上的点到角两边的竖伏距离相等)
∠BAC=2∠BAD,∠ACD=2∠ACE
因为∠B+∠BAC+∠ACB=180°,∠B=60°
所以60°+2∠BAD+2∠ACE=180°
∠BAD+∠ACE=60°.....(1)
因为∠BEC为△AEC的一个外角厅衫
所以∠BEC=∠BAC+∠ACE=2∠BAD+∠ACE=∠BAD+(∠BAD+∠ACE)
把(1)代入
∠BEC=∠BAD+60°
因为∠ADC为△ABD的一个外角
所以∠ADC=∠BAD+∠B=∠BAD+60°
所以∠ADC=∠BEC
且∠FGE=∠FID,FG=FI
所以△FGE≌△FID
所以FE=FD
∠FGE=90°=∠FID
证明:
因为AD、CE是△ABC的角平分线
所以FG=FI=FH(角平分线上的点到角两边的竖伏距离相等)
∠BAC=2∠BAD,∠ACD=2∠ACE
因为∠B+∠BAC+∠ACB=180°,∠B=60°
所以60°+2∠BAD+2∠ACE=180°
∠BAD+∠ACE=60°.....(1)
因为∠BEC为△AEC的一个外角厅衫
所以∠BEC=∠BAC+∠ACE=2∠BAD+∠ACE=∠BAD+(∠BAD+∠ACE)
把(1)代入
∠BEC=∠BAD+60°
因为∠ADC为△ABD的一个外角
所以∠ADC=∠BAD+∠B=∠BAD+60°
所以∠ADC=∠BEC
且∠FGE=∠FID,FG=FI
所以△FGE≌△FID
所以FE=FD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
∠FAC+∠FCA=120°/2=60°
∴∠EFD=120°
∠EFD+∠B=180°
BEFD四点闹芦共圆
易得F在∠EBD的角平分线上
即∠EBF=∠DBF
∴EF=DF(等角对等弦)
也可依照液衡带楼上的过F做拦行垂线的方法
∠FAC+∠FCA=120°/2=60°
∴∠EFD=120°
∠EFD+∠B=180°
BEFD四点闹芦共圆
易得F在∠EBD的角平分线上
即∠EBF=∠DBF
∴EF=DF(等角对等弦)
也可依照液衡带楼上的过F做拦行垂线的方法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询