矩阵正定的充分必要条件是什么?

 我来答
枕流说教育
高能答主

2022-02-10 · 教育就是忘记在校学得的内容后所剩的本事。
枕流说教育
采纳数:506 获赞数:43009

向TA提问 私信TA
展开全部

矩阵正定的充分必要条件如下:

这里的充分必要条件是:矩阵的特征值全为正。对于矩阵A来说,求出A的所有特征值,若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。所以如果需要矩阵正定,则特征值要为正才可。

正定矩阵的特点:

广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M为正定矩阵。例如:B为n阶矩阵,E为单位矩阵,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)。

狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式