矩阵合同的定义是什么?
矩阵合同的定义是两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵C,使得C^TAC=B,则称方阵A合同于矩阵B。
一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
合同矩阵的应用
1855 年,埃米特证明了其他数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来 ,克莱伯施 、布克海姆等证明了对称矩阵的特征根性质。
在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849-1917) 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论。
1854 年,约当研究了矩阵化为标准型的问题。 1892 年,梅茨勒 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。
是指两个矩阵A和B是合同的,当且仅当存在一个可逆矩阵C,使得C^TAC=B,则称方阵A合同于矩阵B。而且在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。
矩阵(Matrix)本意是子宫、控制中心的母体、孕育生命的地方。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
用定义或简单结论因为合同必等价,因为合同必等价,所以 若两个矩阵的秩不相同,则它们不是合同的。
1、这是从定义的角度考虑.若两个矩阵的秩不相同,则它们不是合同的若存在可逆矩阵C,使得 C'AC = B,则A与B合同 。
2、若给两个显式矩阵,判断它们是否合同,只能把它们化成标准型,比较它们的正负惯性指数正负惯性指数分别相等则合同,否则不合同。常用的方法有3种,即配方法、初等变换法和正交变换法。
3、对于任一实系数n元二次型X'AX,要化为标准型,实际上就是要找一个可逆变换X=CY,将它化为Y'BY的形式,其中B为对角阵。则C'AC=B,B就是A的一个合同矩阵了。