一元二次不等式的解法
展开全部
一元二次不等式的解法有如下:
1、当-=b3-4ac≥0时,二次三项式,ax2+bx+c有两个实根,那么ax2+bx+c,总可分解为a(x-x1)(x-x2)的形式。这样,解—元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集,就是这两个—元一次不等式组的解集的交集。
2、用配方法解—元二次不等式。
3、通过一元二次函数图象进行求解,二次函数图象与X轴的两个交点,然后根据题目所需求的"<0"或">0"而推出答案。
4、数轴穿根:用根轴法解高次不等式时,就是先把不等式—端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点。
这大于零的不等式的解对应这曲线在x轴上方部分的实数x得起值集合,小于零的这相反。这种方法叫做序轴标根法。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |