齐次线性方程组的解的三种情况分别是?
1个回答
展开全部
一般来说有三种情况,第一种是无解的情况。也就是说,方程之间出现有矛盾的情况。第二种情况是解为零的情况。这也是其次线性方程组唯一解的情况。另外一种是齐次线性方程组系数矩阵线性相关。这种情况下有无数个解。
系数矩阵:方程组左边各方程的系数作为矩阵就是此方程的系数矩阵。
增广矩阵:将非齐次方程右边作为列向量加在系数矩阵后就是增广矩阵。
其次方程有非零解的条件是系数矩阵的秩小于N,就是说未知数的个数大于方程的个数。
设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初等行变换所化到的行阶梯形矩阵的非零行行数为r,则它的方程组的解只有以下两种类型:
当r=n时,原方程组仅有零解。
当r<n时,有无穷多个解(从而有非零解)。
对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询