1个回答
展开全部
y"+y'+y=3e^(2x)
The aux. equation
r^2+r+1 =0
r=(-1+√3i)/2 or (-1-√3i)/2
let
yg= e^[(-1/2)x].[Acos(√3x/2) +Bsin(√3x/2)]
yp=Ce^(2x)
yp'=2Ce^(2x)
yp''=4Ce^(2x)
yp"+yp'+yp=3e^(2x)
7C=3
C=3/7
yp=(3/7)e^(2x)
通解
y=yg+yp=e^[(-1/2)x].[Acos(√3x/2) +Bsin(√3x/2)] +(3/7)e^(2x)
The aux. equation
r^2+r+1 =0
r=(-1+√3i)/2 or (-1-√3i)/2
let
yg= e^[(-1/2)x].[Acos(√3x/2) +Bsin(√3x/2)]
yp=Ce^(2x)
yp'=2Ce^(2x)
yp''=4Ce^(2x)
yp"+yp'+yp=3e^(2x)
7C=3
C=3/7
yp=(3/7)e^(2x)
通解
y=yg+yp=e^[(-1/2)x].[Acos(√3x/2) +Bsin(√3x/2)] +(3/7)e^(2x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询