拉格朗日定理可以证明积分中值定理吗?

 我来答
小知爱综合
高能答主

2021-12-08 · 善于综合学习,乐于助人
小知爱综合
采纳数:13 获赞数:1294

向TA提问 私信TA
展开全部

可以。

积分中值定理那个是闭区间,用拉格朗日证就是开区间,要用介值定理证才是闭区间。

开闭区间都可以,一般写成开区间。闭区间用介值定理证;开区间设积分上限函数用拉格朗日中值定理证明。中值定理是微积分学中的基本定理,由四部分组成。

内容是说一段连续光滑曲线中必然有一点,它的斜率与整段曲线平均斜率相同(严格的数学表达参见下文)。中值定理又称为微分学基本定理,拉格朗日定理,拉格朗日中值定理,以及有限改变量定理等。

拉格朗日定理简介:

拉格朗日中值定理又称拉氏定理,是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。拉格朗日中值定理是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一阶展开)。

法国数学家拉格朗日于1797年在其著作《解析函数论》的第六章提出了该定理,并进行了初步证明,因此人们将该定理命名为拉格朗日中值定理。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式