非齐次线性方程组的解是什么?

 我来答
小李聊生活家常
高能答主

2021-12-08 · 生活不是选择,而是热爱,要在自己热爱的里
小李聊生活家常
采纳数:376 获赞数:8125

向TA提问 私信TA
展开全部

非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。非齐次线性方程组是常数项不全为零的线性方程组。

非齐次线性方程组Ax=b的求解步骤:

(1)对增广矩阵B施行初等行变换化为行阶梯形。若R(A)<R(B),则方程组无解。

(2)若R(A)=R(B),则进一步将B化为行最简形。

(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于C1,C2……,Cn-r,即可写出含n-r个参数的通解。



解的存在性

非齐次线性方程组

 有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。

非齐次线性方程组有唯一解的充要条件是rank(A)=n。

非齐次线性方程组有无穷多解的充要条件是rank(A)<n。(rank(A)表示A的秩)

富港检测技术(东莞)有限公司_
2024-04-02 广告
Ax=0无非零解时则A为满秩矩阵。则Ax=b一定有解;Ax=0有无穷多解时,则A一定不为满秩矩阵;Ax=b的解得情况有无解和无穷多解;无解:R(A)≠R(A|b)无穷解:R(A)等于R(A|b)。且不为满秩Ax=b无解时,可知Ax=0一定有... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式