从小红和小力各有3张数字卡片,每人拿出一张,一共有几种不同的拿法?

 我来答
刺任芹O
2022-12-15 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8781万
展开全部

一共有9种不同的拿法。

分析过程如下:

小红和小力各有8、2、5三张数字卡片,每人拿出一张,可以看成两步。

第一步小红先拿,小红有3种选择。

第二步小力拿,小力也有3种选择。

由此可得:拿法=3×3=9种。分别是:88 82 85 28 22 25 58 52 55。

扩展资料:

加法原理是分类计数原理,常用于排列组合中,具体是指:做一件事情,完成它有n类方式,第一类方式有M1种方法,第二类方式有M2种方法,??,第n类方式有Mn种方法,那么完成这件事情共有M1+M2+??+Mn种方法。

比如说:从武汉到上海有乘火车、飞机、轮船3种交通方式可供选择,而火车、飞机、轮船分别有k1,k2,k3个班次,那么从武汉到上海共有 k1+k2+k3种方式可以到达。

分类计数原理、分步计数原理,回答的都是有关做一件事的不同方法种数的问题。两者区别在于:分类计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事。

分步计数原理针对的是“分步”问题,各步骤中的方法相互依存,只有各个步骤都完成才算做完这件事。两个计数原理渗透了“以简驭繁、化难为易”的基本思想。

排列组合计算方法如下:

排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)

组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;

例如:

A(4,2)=4!/2!=4*3=12

C(4,2)=4!/(2!*2!)=4*3/(2*1)=6

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式