什么是均值不等式?
展开全部
在数学中,均值不等式包括了一些常用的基本公式。以下是其中的六个基本公式:
1. 算术平均数和几何平均数的关系:
对于非负实数a和b,它们的算术平均数(记为A)和几何平均数(记为G)满足 A ≥ G,等号成立当且仅当a = b。
2. 平均值不等式:
对于非负实数a1, a2, ..., an,它们的算术平均数A和几何平均数G,满足 A ≥ G,等号成立当且仅当a1 = a2 = ... = an。
3. 加权平均值不等式:
对于非负实数a1, a2, ..., an和正实数w1, w2, ..., wn,它们的加权算术平均数(记为AW)和加权几何平均数(记为GW)满足 AW ≥ GW,等号成立当且仅当a1/w1 = a2/w2 = ... = an/wn。
4. 两个正数的均值不等式:
对于正实数a和b,它们的算术平均数A和几何平均数G,满足 A ≥ G,等号成立当且仅当a = b。
5. 两个正数的调和平均数和几何平均数的关系:
对于正实数a和b,它们的几何平均数G和调和平均数H,满足 G ≥ H,等号成立当且仅当a = b。
6. 两个正数的调和平均数和算术平均数的关系:
对于非零正实数a和b,它们的调和平均数H和算术平均数A,满足 H ≤ A,等号成立当且仅当a = b。
这六个基本公式是常见的均值不等式,在数学证明和问题求解中经常被使用。
1. 算术平均数和几何平均数的关系:
对于非负实数a和b,它们的算术平均数(记为A)和几何平均数(记为G)满足 A ≥ G,等号成立当且仅当a = b。
2. 平均值不等式:
对于非负实数a1, a2, ..., an,它们的算术平均数A和几何平均数G,满足 A ≥ G,等号成立当且仅当a1 = a2 = ... = an。
3. 加权平均值不等式:
对于非负实数a1, a2, ..., an和正实数w1, w2, ..., wn,它们的加权算术平均数(记为AW)和加权几何平均数(记为GW)满足 AW ≥ GW,等号成立当且仅当a1/w1 = a2/w2 = ... = an/wn。
4. 两个正数的均值不等式:
对于正实数a和b,它们的算术平均数A和几何平均数G,满足 A ≥ G,等号成立当且仅当a = b。
5. 两个正数的调和平均数和几何平均数的关系:
对于正实数a和b,它们的几何平均数G和调和平均数H,满足 G ≥ H,等号成立当且仅当a = b。
6. 两个正数的调和平均数和算术平均数的关系:
对于非零正实数a和b,它们的调和平均数H和算术平均数A,满足 H ≤ A,等号成立当且仅当a = b。
这六个基本公式是常见的均值不等式,在数学证明和问题求解中经常被使用。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询