关于有泰勒公式求极限的问题
用泰勒公式来求:当x趋于0时lim(e^x*sinx-x(1+x))/(x^3)的极限我这样算对不对:分子=(e^x*sinx-x(1+x))=[1+x+x^2/2+o(...
用泰勒公式来求:当x趋于0时lim(e^x * sinx - x(1+x))/(x^3)的极限
我这样算对不对:
分子=(e^x * sinx - x(1+x))=[1 + x + x^2/2 + o(x^2)][x + o(x)] - x(1+x) = x^3/2 + o(x^3)
再加上分母得1/2,而参考答案则为
.(e^x * sinx - x(1+x))
=[1 + x + x^2/2 + o(x^2)][x - x^3/6 + o(x^3)] - x(1+x) = x^3/3 + o(x^3)
最后得1/3
答案的sinx比我多展开了,为什么要这样呢?而我的为什么不对? 展开
我这样算对不对:
分子=(e^x * sinx - x(1+x))=[1 + x + x^2/2 + o(x^2)][x + o(x)] - x(1+x) = x^3/2 + o(x^3)
再加上分母得1/2,而参考答案则为
.(e^x * sinx - x(1+x))
=[1 + x + x^2/2 + o(x^2)][x - x^3/6 + o(x^3)] - x(1+x) = x^3/3 + o(x^3)
最后得1/3
答案的sinx比我多展开了,为什么要这样呢?而我的为什么不对? 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询