20道简单的五年级奥数题及答案

急急急!!!... 急急急!!! 展开
 我来答
幽灵侠女行天下
推荐于2017-11-22 · TA获得超过1.2万个赞
知道小有建树答主
回答量:284
采纳率:0%
帮助的人:262万
展开全部
1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?

【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.
方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.
有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.

2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?
【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.
如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.
也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.
那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.

3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?

【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.
因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.
又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.
在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.
那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.

方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.

4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?

【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;
如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.
现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.
设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.
即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.
即甲、乙两家各交电费2元7角6分,1元8角.
5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?
【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同时已知m与n都是10的倍数,于是有
, 解得 , 另外四组因为解得m、n不是10的倍数.
经检验只有 满足.
所以,一小参加春游430人,二小参加春游570人.

6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?
【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.
顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;
逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.
休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.
第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.
第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.
于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.
所以,他最多能划离码头1.7千米.
7. 机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?

48×[40×4÷(48-40)]=960(台)

8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?

【分析与解】12000×24÷(24-4)-12000=2400(本)

9. 甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?

【分析与解】甲厂存砖:87500-25000=62500(块)
乙厂存砖:(87500+4500)-(25000-3000)=70000(块)
∴ 乙厂存砖多,多 70000-62500=7500(块)

10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?
【分析与解】(45-24)×2=42(千克)

11.小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?

【分析与解】这是一个相向而行相遇求路程的问题。但两人不是同时出发,如果能转换成同时出发,并且求出行多少小时相遇,就可以用数学课学的方法解答。

两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。

答:A、B两地间的路程是64千米。

12:甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?

【分析与解】如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。

答:小伟每分钟走78米。

13:客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?

【分析与解】当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)

答:两车开出后4.95小时在途中相遇。

14:甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?
【分析与解】二人同时、同地出发同向而行,但开始时,乙比甲行得慢,当乙的速度增加到与甲相同前,两人间的距离越拉越大,当乙的速度超过甲时,两人间的距离又越来越近,直到乙追上甲。

开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。

答:乙出发后第21天追上甲。

15:甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?

【分析与解】慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。

16. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
【分析与解】7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168

17. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
【分析与解】28×3+33×5-30×7=39。

18. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
【分析与解】设第二组有x个数,则63+11x=8×(9+x),解得x=3。

19.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
【分析与解】第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

20. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)
【分析与解】每20天去9次,9÷20×7=3.15(次)。
密密麻麻FL
2020-06-06
知道答主
回答量:3
采纳率:0%
帮助的人:1764
展开全部
有奖励
20道简单的五年级奥数题及答案
急急急!!!
我来答有奖励
138******49
LV.1
聊聊关注成为第1位粉丝
1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?
【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.
方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.
有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.
2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?
【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.
如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.
也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.
那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.
3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?
【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.
因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.
又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.
在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.
那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.
4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?
【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;
如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.
现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.
设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.
即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.
即甲、乙两家各交电费2元7角6分,1元8角.
5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?
【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同时已知m与n都是10的倍数,于是有
, 解得 , 另外四组因为解得m、n不是10的倍数.
经检验只有 满足.
所以,一小参加春游430人,二小参加春游570人.
6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?
【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.
顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;
逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.
休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.
第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.
第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.
于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.
所以,他最多能划离码头1.7千米.
7. 机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?
48×[40×4÷(48-40)]=960(台)
8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?
【分析与解】12000×24÷(24-4)-12000=2400(本)
9. 甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?
【分析与解】甲厂存砖:87500-25000=62500(块)
乙厂存砖:(87500+4500)-(25000-3000)=70000(块)
∴ 乙厂存砖多,多 70000-62500=7500(块)
10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?
【分析与解】(45-24)×2=42(千克)
11.小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?
【分析与解】这是一个相向而行相遇求路程的问题。但两人不是同时出发,如果能转换成同时出发,并且求出行多少小时相遇,就可以用数学课学的方法解答。
两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。
答:A、B两地间的路程是64千米。
12:甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?
【分析与解】如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。
答:小伟每分钟走78米。
13:客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?
【分析与解】当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)
答:两车开出后4.95小时在途中相遇。
14:甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?
【分析与解】二人同时、同地出发同向而行,但开始时,乙比甲行得慢,当乙的速度增加到与甲相同前,两人间的距离越拉越大,当乙的速度超过甲时,两人间的距离又越来越近,直到乙追上甲。
开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。
答:乙出发后第21天追上甲。
15:甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?
【分析与解】慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。
16. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
【分析与解】7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
17. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
【分析与解】28×3+33×5-30×7=39。
18. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
【分析与解】设第二组有x个数,则63+11x=8×(9+x),解得x=3。
19.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
【分析与解】第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
20. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)
【分析与解】每20天去9次,9÷20×7=3.15(次)。
编辑于 2020-02-13
查看全部8个回答
数学考试题,数学题目大全,0元试听,总结高效提分方法。

值得一看的数学相关信息推荐
数学考试题,掌门1对1拥有10000+教研人员,1对1针对性教学,查缺补漏,快速提升!数学考试题,初高中在线1对1辅导,好老师1对1辅导教出好成绩。
上海掌小门教育科技..广告 
掌门优课在线高二数学题目及答案辅导_一线名师在线教学
名师高二数学题目及答案辅导,全程视频互动,结合地域差异,个性化教学,2节精品小班课免费领!
上海掌小门教育科技..广告 
相关问题全部
广告数学题五年级_数学冲刺高分的秘籍_名师来告诉你
数学题五年级_作业帮,紧扣当地教材,快速吃透教材重难点,短时冲刺高分必备。学完就测评孩子成绩提升看得见!
572020-06-03
20道五年级下学期奥数题(简单一点的)不要答案
第六届小学“希望杯”全国数学邀请赛一、填空题(每小题5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )= 2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。如果在盒子中从左向右放5个不同的“福娃”,那么,有 种不同的放法。3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。那么,这列数中的第10个数是 4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐 人。5、一个拧紧瓶盖的瓶子里装着一些水(如图1),由图中的数据可推知瓶子的容积是 立方厘米;( 取3.14)6、某小区有一块如图2所示的梯形空地,根据图中的数据计算,空地的面积是 平方米。 7、如图3,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是 平方厘米。8、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。参加E组的人数最少,只有4人,那么,参加B组的有 人。 9、菜地里的西红柿获得丰收,摘了全部的 时,装满了3筐还多16千克。摘完其余部分后,又装满6筐,则共收得西红柿 千克。10、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。因而提前3天完成任务。这条路全长 千米。11、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了 ,结果提前一个半小时到达;返回时,按原计划的速度行驶280千米后,将车速提高 ,于是提前1小时40分到达北京。北京、上海两市间的路程是 千米。12、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是 平方厘米。二、解答题(本大题共4小题,每小题15分,共60分)要求:写出推算过程13、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。如6=3+3,12=5+7,等。那么自然数100可以写成多少种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)14、如图4(a),ABCD是一个长方形,其中阴影部分是由一副面积为100平方厘米的七巧板(图4(b))拼成。那么,长方形ABCD的面积是多少平方厘米? 15、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。那么2008号运动员比赛了多少场?16、有一个蓄水池装了9根相同的水管,其中一根是进水管,其余8根是出水管。开始时,进水管以均匀的速度不同地向蓄水池注水。后来,想打开出水管,使池内的水全部排光。如果同时打开8根出水管,则3小时可排尽池内的水;如果仅打开5根出水管,则需6小时才能排尽池内的水。若要在4.5小时内排尽池内的水,那么应当同时打开多少根出水管第二届华博士小学数学奥林匹克网上竞赛试题及答案选择正确的答案: (1)在下列算式中加一对括号后,算式的最大值是( )。7 × 9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90(2)已知三角形的内角和是180度.一个五边形的内角和应是( )度.A 500 B 540 C 360 D 480(3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么 甲数是( ). A 1.75 B 1.47 C 1.45 D 1.95(4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱 少1.1元,顾客应退回的瓶钱是( )元.A 0.8 B 0.4 C 0.6 D 1.2(5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40(6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁? A16 B11 C9 D10 (7)一个两位数除250,余数是37,这样的两位数是( ).A 17 B38 C 71 D 91(8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段.A 13 B 12 C 14 D 15(9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ). A 12 B 18 C10 D11(10)一昼夜钟面上的时针和分针重叠( )次.A 23 B 12 C 20 D13(11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台, 求四月份比原计划超产多少台机器?A 16 B 8 C 10 D 12(12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块? A 15 B 12 C 75 D 8 E(13)图中ABCD是长方形,已知AB=4厘米,BC=6厘米,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED=?厘米A 9 B 7 C 8 D 6 F DA BC (14)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条?A 48 B 50 C 52 D 58(15)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个?A 10 B 100 C 20 D 1602006年“希望杯”全国数学大赛(时间:90分钟 满分:120分)题 号一二其中:总 分13141516得 分 得分评卷人 一、填空题。(每题6分,共72分。) 1.计算:1+++++++++…+++…++…++=____________。2.8+88+888+…+88…8的和的个位上的数字是____________。3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。最后橘子分完了,苹果还剩下12个。那么一共分给了____________名小朋友。5.有这样一种算式:三个不同的自然数相乘,积是100。这样的算式有____________种。(交换因数位置的算同一种。)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。7.一天,小慧和刘老师一起谈心。小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。”刘老师今年的年龄是____________岁。8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。那么前3名同学的总分比后3名同学的总分多____________分。10.在右图中,已知正方形ABCD的面积是正方形EFGH面积的4倍,正方形AMEN的周长是4厘米,那么正方形ABCD的周长是____________厘米。11.一个自然数各个数位上的数字之和是15。如果它 的各个数位上的数字都不相同,那么符合条件的最大数是____________,最小数是____________。12.对自然数作如下操作:如果是偶数就除以2,如果是奇数就减去1,如此操作直到结果变成0为止。那么经过6次操作后使结果变成0的数有______个,分别是_____________________________________。得分评卷人 二、解答题。(每题12分,共48分。) 13.五名裁判员给一名体操运动员评分,去掉一个最高分和一个最低分后平均得分是9.38分。若去掉一个最高分平均得分为9.26分;若去掉一个最低分平均得分为9.46分。这名体操运动员的最高分和最低分分别是多少分?14.小狗给动物王国编一本童话故事书。 我编这本书一共用了666个数字。小狗编的这本书一共有多少页?15.学校合唱团全部是来自甲、乙、丙三个班的同学,其中来自甲、乙两班的同学共有60人。合唱团中不是甲班的同学有100人,不是乙班的同学有90人。问:(1)合唱团中来自甲、乙两班的同学各有多少人?(2)合唱团的同学一共有多少人?16.下面是一些“神秘等式”。式中的“+”、“-”、“×”、“÷”等运算符号的意义都与普通的用法相同,但0、1、2、3、……、9等数字所代表的意义则与普通的不同。① 1×5=1 ② 7×2=96 ③ 99-5=3④ 83÷4=4 ⑤ 5×5…×5=6 ⑥ 9+(7×8)=97(1)请你破解出这些“神秘等式”中的秘密,找出其中每个数字所代表的普通意义。(2)普通意义的2006用“神秘等式”中数字所代表的意义来表示,怎样表示?(3)如果采用“神秘等式”中数字所代表的意义,那么,60+06等于多少?
1 浏览560
求,,,20道小学五年级的奥数题及答案!
1.甲乙丙三人同时从同一地点出发沿同一路线追赶前面的小明;他们三人分别用9分,15分,20分追上小明,已知甲每小时行24千米,以每小时行20千米,求丙每小时行多少千米? 甲9分追上时行走了24*9/60=3.6,乙9分时行走了20*9/60=3,说明在9分时,乙和小明距离为0.6,15分时乙追上,用了6分追了0.6千米,说明乙比小明每分多走0.1千米,乙速度为20,则小明为14千米每小时,则设丙速度为x 9/60*x+11/60*(x-14)=3.6 x=18.5(千米每小时) 2.甲乙两人同时从山脚开始爬山,到达山顶后就立即下山,甲乙两人下山的速度都是各自上山速度的二倍,嫁到山顶是一句山顶还有500米,甲回到山脚是乙刚好下到半山腰,求从山脚到山顶的路程。 甲乙两人下山的速度都是各自上山速度的二倍,甲到山顶时乙距山顶还有500米,甲到山脚时乙距离山脚距离为500*(1+2)=1500米。 甲回到山脚是乙刚好下到半山腰,所以,从山脚到山顶的路程为3000米 3.甲一分钟能洗3个盘子或9个碗,乙一分钟能洗2个盘子或7个碗,甲乙两人合作,20分钟洗了134个盘子和碗,问洗了几个盘子几个碗? 设甲乙各用x、y分钟洗盘子,则 3x+9(20-x)+2y+7(20-y)=134 6x+5y=186 x<=20,y<=20 x=16, y=18 所以,盘子=16*3+18*2=84个,碗=4*9+2*7=50个 4.全班有30名学生,其中17人会骑自行车,16人会游泳,11人会滑冰,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友264d7a9
2020-02-13 · TA获得超过181个赞
知道答主
回答量:1
采纳率:0%
帮助的人:651
展开全部
1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?
【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.
方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.
有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.
2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?
【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.
如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.
也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.
那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.
3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?
【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.
因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.
又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.
在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.
那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.
4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?
【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;
如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.
现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.
设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.
即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.
即甲、乙两家各交电费2元7角6分,1元8角.
5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?
【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同时已知m与n都是10的倍数,于是有
, 解得 , 另外四组因为解得m、n不是10的倍数.
经检验只有 满足.
所以,一小参加春游430人,二小参加春游570人.
6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?
【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.
顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;
逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.
休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.
第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.
第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.
于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.
所以,他最多能划离码头1.7千米.
7. 机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?
48×[40×4÷(48-40)]=960(台)
8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?
【分析与解】12000×24÷(24-4)-12000=2400(本)
9. 甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?
【分析与解】甲厂存砖:87500-25000=62500(块)
乙厂存砖:(87500+4500)-(25000-3000)=70000(块)
∴ 乙厂存砖多,多 70000-62500=7500(块)
10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?
【分析与解】(45-24)×2=42(千克)
11.小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?
【分析与解】这是一个相向而行相遇求路程的问题。但两人不是同时出发,如果能转换成同时出发,并且求出行多少小时相遇,就可以用数学课学的方法解答。
两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。
答:A、B两地间的路程是64千米。
12:甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?
【分析与解】如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。
答:小伟每分钟走78米。
13:客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?
【分析与解】当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)
答:两车开出后4.95小时在途中相遇。
14:甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?
【分析与解】二人同时、同地出发同向而行,但开始时,乙比甲行得慢,当乙的速度增加到与甲相同前,两人间的距离越拉越大,当乙的速度超过甲时,两人间的距离又越来越近,直到乙追上甲。
开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。
答:乙出发后第21天追上甲。
15:甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?
【分析与解】慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。
16. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
【分析与解】7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
17. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
【分析与解】28×3+33×5-30×7=39。
18. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
【分析与解】设第二组有x个数,则63+11x=8×(9+x),解得x=3。
19.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
【分析与解】第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
20. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)
【分析与解】每20天去9次,9÷20×7=3.15(次)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
呆萌的皮皮米
2020-07-01 · TA获得超过178个赞
知道答主
回答量:48
采纳率:0%
帮助的人:2.8万
展开全部
、百度知道
五年级奥数数学题
20道简单的五年级奥数题及答案
查看全部10个回答写回答有奖励
20道简单的五年级奥数题及答案
急急急!!!
我来答有奖励
138******49
聊聊关注成为第3位粉丝
1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?
【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.
方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.
有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.
2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?
【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.
如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.
也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.
那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.
3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?
【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.
因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.
又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.
在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.
那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.
4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?
【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;
如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.
现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.
设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.
即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.
即甲、乙两家各交电费2元7角6分,1元8角.
5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?
【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同时已知m与n都是10的倍数,于是有
, 解得 , 另外四组因为解得m、n不是10的倍数.
经检验只有 满足.
所以,一小参加春游430人,二小参加春游570人.
6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?
【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.
顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;
逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.
休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.
第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.
第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.
于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.
所以,他最多能划离码头1.7千米.
7. 机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?
48×[40×4÷(48-40)]=960(台)
8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?
【分析与解】12000×24÷(24-4)-12000=2400(本)
9. 甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?
【分析与解】甲厂存砖:87500-25000=62500(块)
乙厂存砖:(87500+4500)-(25000-3000)=70000(块)
∴ 乙厂存砖多,多 70000-62500=7500(块)
10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?
【分析与解】(45-24)×2=42(千克)
11.小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?
【分析与解】这是一个相向而行相遇求路程的问题。但两人不是同时出发,如果能转换成同时出发,并且求出行多少小时相遇,就可以用数学课学的方法解答。
两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。
答:A、B两地间的路程是64千米。
12:甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?
【分析与解】如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。
答:小伟每分钟走78米。
13:客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?
【分析与解】当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)
答:两车开出后4.95小时在途中相遇。
14:甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?
【分析与解】二人同时、同地出发同向而行,但开始时,乙比甲行得慢,当乙的速度增加到与甲相同前,两人间的距离越拉越大,当乙的速度超过甲时,两人间的距离又越来越近,直到乙追上甲。
开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。
答:乙出发后第21天追上甲。
15:甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?
【分析与解】慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。
16. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
【分析与解】7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
17. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
【分析与解】28×3+33×5-30×7=39。
18. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
【分析与解】设第二组有x个数,则63+11x=8×(9+x),解得x=3。
19.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
【分析与解】第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
20. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)
【分析与解】每20天去9次,9÷20×7=3.15(次)。
编辑于 2020-02-13
查看全部10个回答
数学题,周末不用再接送孩子,在家就能上辅导

值得一看的数学题相关信息推荐
掌门1对1数学题,拥有平板/电脑/手机,在家就能上辅导,5层筛选全国优秀教师,中小学全科在线辅导,1对1制定个性化教程,免费测评课,准确判断您孩子的学习水平
m.zhangmen.com广告 
下册五年级数学题,上学而思网校_好方法更有效

「学而思网校」暑期数学提分特训班,限时9元,所学即所考,成绩稳步提升。课程适合全国中小学生,送全套学习教辅,全国限量500名!
xuersi.com广告 
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
路遥YMr
2020-08-05
知道答主
回答量:1
采纳率:0%
帮助的人:591
展开全部
1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?
【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.
方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.
有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.
2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?
【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.
如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.
也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.
那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.
3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?
【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.
因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.
又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.
在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.
那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(16)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式