如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于

如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM=,则MN的长为... 如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM= ,则MN的长为 展开
 我来答
誓唁詤唁921
2015-01-12 · 超过55用户采纳过TA的回答
知道答主
回答量:109
采纳率:0%
帮助的人:133万
展开全部

连接GM,GN,由AG=AB=AD,利用“HL”证明△AGE≌△ABE,△AGF≌△ADF,从而有BE=EG=4,DF=FG=6,设正方形的边长为a,在Rt△CEF中,利用勾股定理求a的值,再利用勾股定理求正方形对角线BD的长,再证明△ABM≌△AGM,△ADN≌△AGN,得出MG=BM,NG=ND,∠MGN=∠MGA+∠NGA=∠MBA+∠NDA=90°,在Rt△GMN中,利用勾股定理求MN的值.
解:如图,连接GM,GN,

∵AG=AB,AE=AE,∴△AGE≌△ABE,
同理可证△AGF≌△ADF,
∴BE=EG=4,DF=FG=6,
设正方形的边长为a,在Rt△CEF中,CE=a-4,CF=a-6,
由勾股定理,得CE 2 +CF 2 =EF 2 ,即(a-4) 2 +(a-6) 2 =10 2
解得a=12或-2(舍去负值),
∴BD=12
易证△ABM≌△AGM,△ADN≌△AGN,
∴MG=BM=3 ,NG=ND=1 -3 -MN=9 -MN,
∠MGN=∠MGA+∠NGA=∠MBA+∠NDA=90°,
在Rt△GMN中,由勾股定理,得MG 2 +NG 2 =MN 2
即(3 2 +(9 -MN) 2 =MN 2
解得MN=5 故答案为:5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式