如图-1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上
如图-1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻...
如图-1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图-2,若AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒( ),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标.
展开
1个回答
展开全部
解:(1)依题意可知,折痕 是四边形 的对称轴, ∴在 中, , . . . ∴点E坐标为(2,4). 在 中, , 又 . . 解得: . 点坐标为 (2)如图① , . ,又知 , , , .又 而显然四边形 为矩形. 又 ∴当 时, 有最大值 . (3)(i)若以 为等腰三角形的底,则 (如图①) 在 中, , , ∴P为 的中点, 又 , ∴M为 的中点.过点M作 ,垂足为F,则 是 的中位线, , , ∴当 时, , 为等腰三角形. 此时点M坐标为 . (ii)若以AE为等腰三角形的腰,则 (如图②) 在
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|