如何进行一元二次不等式的教学设计
1个回答
2016-11-01 · 知道合伙人教育行家
关注
展开全部
【教学目标】
知识与技能目标:
(1)理解一元二次方程、一元二次不等式与二次函数的关系;
(2)掌握图象法解一元二次不等式的方法;
(3)培养学生数形结合的能力,分类讨论的思想方法,培养抽象概指敏括能力和逻辑思维能力;
过程与方法目标:培养学生运用等价转化和数形结合等数学思想解决数学问题的能力.
情态目标:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
【教学重点】
(1)从实际情境中抽象出一元二次不等式模型;
(2)一元二次不等式的解法。
【教学难点】
理解二次函数、一元逗绝二次方程与一元二次不等式解集之间的关系。
【授课类型】:新授课
【教学过程】
一.课题导入
问题提出:汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距”。刹车距是分析事故的一个重要因素。在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了。事后现场测得甲车的刹车距离接近但未超过12m,乙车的刹车距离刚刚超过了10m,又知甲、乙两种车型的刹车距s(m)与车速x(km/h)之间分别有如下关系:
超过了40km/h,谁就违章了。由题意,只需分别解出不等式
确定甲,乙两车的行驶速度,就可以判断哪一辆车违章超速行驶。
二.讲授新课
(一)一元二次不等式的定义:
像上面的形如 的不等式(其中 ),叫做一元二次不等式。
(二)如何解一元二次不等式
A.画出二次函数 的图像.
B.观察图象:
如图:观察函数图象山逗姿,可知:当 x<-1,或x>3时,函数图象位于x轴上方,此时,y>0,即 ;当-1<0,即 ;
C.一元二次不等式的解集:
一般地,使某个一元二次不等式成立的 的值叫这个一元二次不等式的解。一元二次不等式的所有解组成的集合,叫作这个一元二次不等式的解集。
(三)例题讲解
例1:解不等式:的解
解:方程的两解是 。
函数 的图像与 轴有两个交点(-2,0)和(,0),观察图像可得,不等式的解集为
例2:解不等式: 的解
解:方程 无实数解:
函数 的图像与 轴无交点。
观察图像可得,不等式的解集为R。解不等式: 的解
例3:解不等式
解:方程 有两个相同实数解:
函数 的图像与 轴仅有一个交点( ,0)
观察图像可得,不等式的解集为 。
(四).抽象概括:
通过上面3个例子可知:当 时,解形如 的一元二次不等式,一般可分为三步:
(1) 确定对应方程的解;
(2) 画出对应函数 的图像简图;
(3) 由图像得出不等式的解。
(五)思考交流:
(六)课堂练习
练习1
课本练习2
(七)作业布置
课本习题3-2A组7题(1)(2)(3)(6)
知识与技能目标:
(1)理解一元二次方程、一元二次不等式与二次函数的关系;
(2)掌握图象法解一元二次不等式的方法;
(3)培养学生数形结合的能力,分类讨论的思想方法,培养抽象概指敏括能力和逻辑思维能力;
过程与方法目标:培养学生运用等价转化和数形结合等数学思想解决数学问题的能力.
情态目标:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
【教学重点】
(1)从实际情境中抽象出一元二次不等式模型;
(2)一元二次不等式的解法。
【教学难点】
理解二次函数、一元逗绝二次方程与一元二次不等式解集之间的关系。
【授课类型】:新授课
【教学过程】
一.课题导入
问题提出:汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距”。刹车距是分析事故的一个重要因素。在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了。事后现场测得甲车的刹车距离接近但未超过12m,乙车的刹车距离刚刚超过了10m,又知甲、乙两种车型的刹车距s(m)与车速x(km/h)之间分别有如下关系:
超过了40km/h,谁就违章了。由题意,只需分别解出不等式
确定甲,乙两车的行驶速度,就可以判断哪一辆车违章超速行驶。
二.讲授新课
(一)一元二次不等式的定义:
像上面的形如 的不等式(其中 ),叫做一元二次不等式。
(二)如何解一元二次不等式
A.画出二次函数 的图像.
B.观察图象:
如图:观察函数图象山逗姿,可知:当 x<-1,或x>3时,函数图象位于x轴上方,此时,y>0,即 ;当-1<0,即 ;
C.一元二次不等式的解集:
一般地,使某个一元二次不等式成立的 的值叫这个一元二次不等式的解。一元二次不等式的所有解组成的集合,叫作这个一元二次不等式的解集。
(三)例题讲解
例1:解不等式:的解
解:方程的两解是 。
函数 的图像与 轴有两个交点(-2,0)和(,0),观察图像可得,不等式的解集为
例2:解不等式: 的解
解:方程 无实数解:
函数 的图像与 轴无交点。
观察图像可得,不等式的解集为R。解不等式: 的解
例3:解不等式
解:方程 有两个相同实数解:
函数 的图像与 轴仅有一个交点( ,0)
观察图像可得,不等式的解集为 。
(四).抽象概括:
通过上面3个例子可知:当 时,解形如 的一元二次不等式,一般可分为三步:
(1) 确定对应方程的解;
(2) 画出对应函数 的图像简图;
(3) 由图像得出不等式的解。
(五)思考交流:
(六)课堂练习
练习1
课本练习2
(七)作业布置
课本习题3-2A组7题(1)(2)(3)(6)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询