无穷小量中的高阶,同阶无穷小,等价无穷小怎样理解? 价与阶有什么不同?
任何一个概念都有其存在的理由,也很难说尽。
比如:在极限计算中有一种方法利用泰勒公式,这个方法可以算做等价无穷小代换的一种推广,它的做法中就是将不同函数的同阶无穷小拿出来算,把高阶无穷小合并处理来简化问题。
还有很多学科中做误差的理论分析时也经常会用到同阶无穷小和高阶无穷小,从实际工程的实用性上看,同阶无穷小和高阶无穷小远比等价无穷小的应用要广泛(因为等价无穷小的要求太高)。
相关定义
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。
确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
同阶无穷小就是lim(b/a)=c≠0就说b是a的同阶无穷小,如果是等于1,就说b是a的等价无穷小
等价无穷小:是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。
同阶无穷小:如果lim F(x)=0,lim G(x)=0,且lim F(x)/G(x)=c,c为常数并且c≠0,则称F(x)和 G(x)是同阶无穷小。同阶无穷小量,其主要对于两个无穷小量的比较而言,意思是两种趋近于0的速度相仿。
扩展资料:
有限个无穷小量之和仍是无穷小量。
有限个无穷小量之积仍是无穷小量。
有界函数与无穷小量之积为无穷小量。
特别地,常数和无穷小量的乘积也为无穷小量。
恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。
参考资料来源:百度百科-无穷小量