无穷小量中的高阶,同阶无穷小,等价无穷小怎样理解? 价与阶有什么不同?

 我来答
鲨鱼星小游戏
高粉答主

2021-08-19 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2708 获赞数:238338

向TA提问 私信TA
展开全部

任何一个概念都有其存在的理由,也很难说尽。

比如:在极限计算中有一种方法利用泰勒公式,这个方法可以算做等价无穷小代换的一种推广,它的做法中就是将不同函数的同阶无穷小拿出来算,把高阶无穷小合并处理来简化问题。

还有很多学科中做误差的理论分析时也经常会用到同阶无穷小和高阶无穷小,从实际工程的实用性上看,同阶无穷小和高阶无穷小远比等价无穷小的应用要广泛(因为等价无穷小的要求太高)。

相关定义

无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。无穷小量即以数0为极限的变量,无限接近于0。

确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。

帐号已注销
2021-01-03 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:161万
展开全部

同阶无穷小就是lim(b/a)=c≠0就说b是a的同阶无穷小,如果是等于1,就说b是a的等价无穷小

等价无穷小:是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。

同阶无穷小:如果lim F(x)=0,lim G(x)=0,且lim F(x)/G(x)=c,c为常数并且c≠0,则称F(x)和 G(x)是同阶无穷小。同阶无穷小量,其主要对于两个无穷小量的比较而言,意思是两种趋近于0的速度相仿。

扩展资料:

有限个无穷小量之和仍是无穷小量。

有限个无穷小量之积仍是无穷小量。

有界函数与无穷小量之积为无穷小量。

特别地,常数和无穷小量的乘积也为无穷小量。

恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。

参考资料来源:百度百科-无穷小量

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友67158d3dd0
2018-03-28 · TA获得超过5491个赞
知道大有可为答主
回答量:1835
采纳率:87%
帮助的人:721万
展开全部


如图所示。

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式