降阶法 :
降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。
各情况如下:
①如果某个行列式的某一行或列的元素只有一个不为0,那么按照这一行或列展开就比较方便,展开后只会出现一个降了一阶的行列式。
②如果某行或列只有两个非零元素也行,展开后成为两个降了一阶的行列式相加的形式。
基本介绍:
线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数。
非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。
线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。
向量现代线性代数已经扩展到研究任意或无限维空间。一个维数为n的向量空间叫做n维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象n维空间中的向量,这样的向量(即n元组)用来表示数据非常有效。
由于作为n元组,向量是n个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。