等差数列的递推公式是什么?
展开全部
等差数列的通项公式为:an=a1+(n-1)d
(1)
前n项和公式为:sn=na1+n(n-1)d/2或sn=n(a1+an)/2
(2)
以上n均属于正整数。
等差中项:一般设为ar,am+an=2ar,所以ar为am,an的等差中项,且为数列的平均数。
任意两项am,an的关系为:an=am+(n-m)d
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈n*,且m+n=p+q,则有am+an=ap+aq,sm-1=(2n-1)an,s2n+1=(2n+1)an+1,sk,s2k-sk,s3k-s2k,…,snk-s(n-1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
(1)
前n项和公式为:sn=na1+n(n-1)d/2或sn=n(a1+an)/2
(2)
以上n均属于正整数。
等差中项:一般设为ar,am+an=2ar,所以ar为am,an的等差中项,且为数列的平均数。
任意两项am,an的关系为:an=am+(n-m)d
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈n*,且m+n=p+q,则有am+an=ap+aq,sm-1=(2n-1)an,s2n+1=(2n+1)an+1,sk,s2k-sk,s3k-s2k,…,snk-s(n-1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询