泰勒公式可以推导出什么结论?

 我来答
百度网友66a52d9
高粉答主

2022-10-27 · 醉心答题,欢迎关注
知道大有可为答主
回答量:377
采纳率:98%
帮助的人:68.7万
展开全部

1、对数ln(1-x)的泰勒公式是:ln(1+x)=x-x^2\2+x^3\3-x^4\4+.......+(-1)^(n-1)x^n\n+O(x^(n+1))

2、在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

3、泰勒公式(Taylor's formula)

带Peano余项的Taylor公式(泰勒公式Maclaurin公式):可以反复利用L'Hospital法则来推导,

f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f^(n) (x0)/n!(x-x0)^n+o((x-x0)^n)

泰勒中值定理(带拉格郎日余项的泰勒公式):若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和:

f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2,+f'''(x0)/3!*(x-x0)^3+……+f(n)(x0)/n!*(x-x0)^n+Rn(x)

其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),这里ξ在x和x0之间,该余项称为拉格朗日型的余项。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式