求Sn=1/2+2/4+3/8+...+n/2^n
1个回答
展开全部
Sn=1/2+2/4+3/8+...+n/2^n
(1/2)Sn=1/4+2/8+3/16+...+(n-1)/2^n+n/2^(n+1)
所以Sn-(1/2)Sn=1/2+(2/4-1/4)+(3/8-2/8)+(4/16-3/16)+...+[n-(n-1)]/2^n+n/2^(n+1)
=1/2+1/4+1/8++...+1/2^n+n/2^(n+1)
令a=1/2+1/4+1/8++...+1/2^n-1+1/2^n
则2a=1+1/2+1/4+1/8++...+1/2^n-1
a=2a-a=1-1/2^n
所以Sn-(1/2)Sn=(1/2)Sn=1-1/2^n+n/2^(n+1)=1-2/2^(n+1)+n/2^(n+1)=1+(n-2)/2^(n+1)
所以Sn=2*[1+(n-2)/2^(n+1)]=2+(n-2)/2^n
(1/2)Sn=1/4+2/8+3/16+...+(n-1)/2^n+n/2^(n+1)
所以Sn-(1/2)Sn=1/2+(2/4-1/4)+(3/8-2/8)+(4/16-3/16)+...+[n-(n-1)]/2^n+n/2^(n+1)
=1/2+1/4+1/8++...+1/2^n+n/2^(n+1)
令a=1/2+1/4+1/8++...+1/2^n-1+1/2^n
则2a=1+1/2+1/4+1/8++...+1/2^n-1
a=2a-a=1-1/2^n
所以Sn-(1/2)Sn=(1/2)Sn=1-1/2^n+n/2^(n+1)=1-2/2^(n+1)+n/2^(n+1)=1+(n-2)/2^(n+1)
所以Sn=2*[1+(n-2)/2^(n+1)]=2+(n-2)/2^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询