已知复数|z1|=|z2|=1,z2-z1=1.求arg(z1/z2).

 我来答
天士凯数码17
2022-09-15 · TA获得超过2730个赞
知道小有建树答主
回答量:3605
采纳率:100%
帮助的人:191万
展开全部
解: 设z1=cosa+isina z2=cosb+isinb 依握碰|z2-z1|=1得 (cosb+isinb)-(cosa+isina)=1 --->(cosb-cosa)+i(sinb-sina)=1 从而由复数相等段大谈仿睁定义,得 cosb-cosa=1 (1) sinb-sina=0 (2) (1)^2+(2)^2,得 2-2cos(a-b)=1 --->cos(a-...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式