lim((1+x)^(1/x)/e))^(1/x) x趋近于0
1个回答
展开全部
lim(x->0) [(1+x)^(1/x) / e ]^(1/x)
=lim(x->0) [(1+x)/ e^x ]^(1/x^2)
let
L = lim(x->0) [(1+x)/ e^x ]^(1/x^2)
lnL = lim(x->0) ln[(1+x)/ e^x ] / x^2
=lim(x->0) [ ln(1+x) - x ] / x^2 (0/0)
=lim(x->0)[ 1/(1+x) -1]/(2x)
=lim(x->0) -1/[2(1+x)]
= -1/2
L = e^(-1/2)
=lim(x->0) [(1+x)/ e^x ]^(1/x^2)
let
L = lim(x->0) [(1+x)/ e^x ]^(1/x^2)
lnL = lim(x->0) ln[(1+x)/ e^x ] / x^2
=lim(x->0) [ ln(1+x) - x ] / x^2 (0/0)
=lim(x->0)[ 1/(1+x) -1]/(2x)
=lim(x->0) -1/[2(1+x)]
= -1/2
L = e^(-1/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询