微分方程(1+3y)xdx-(1+x^2)dy=0的通解
1个回答
关注
展开全部
|1+3y|=(1+x²+c)^(3/2)
咨询记录 · 回答于2023-04-09
微分方程(1+3y)xdx-(1+x^2)dy=0的通解
|1+3y|=(1+x²+c)^(3/2)
微分方程(1+3y)xdx-(1+x^2)dy=0的通解解题(1+3y)xdx-(1+x^2)dy=0(1+x^2)dy=(1+3y)xdx1/(1+3y)dy=x/(1+x²)dx∫1/(1+3y)dy=∫x/(1+x²)dx1/3∫1/(1+3y)d(1+3y)=1/2∫1/(1+x²)dx²1/3ln|1+3y|=1/2ln(1+x²+c)|1+3y|=(1+x²+c)^(3/2)
微分方程(1+3y)xdx-(1+x^2)dy=0的通解解题(1+3y)xdx-(1+x^2)dy=0(1+x^2)dy=(1+3y)xdx1/(1+3y)dy=x/(1+x²)dx∫1/(1+3y)dy=∫x/(1+x²)dx1/3∫1/(1+3y)d(1+3y)=1/2∫1/(1+x²)dx²1/3ln|1+3y|=1/2ln(1+x²+c)|1+3y|=(1+x²+c)^(3/2)