已知函数y=根号下(mx^2-6mx+m+8)的定义域为R求实数m的取值范围

我已经看过别人的答案了,我要一个解释清楚的答案!为什么应该是m>0,然后就会△<0?谁能解释下啊?△<0岂不是无解了?... 我已经看过别人的答案了,我要一个解释清楚的答案!为什么应该是m>0,然后就会△<0?谁能解释下啊?△<0岂不是无解了? 展开
跑向巅峰
2009-10-03 · 专业跑步教练,为你揭开跑步背后的秘密
跑向巅峰
采纳数:363 获赞数:12389

向TA提问 私信TA
展开全部
解:
对于y=√(mx^2-6mx+m+8),
因为其定义域为R,所以有:

m≥0;
△=(-6m)^2-4m(m+8)≤0.

解出这个条件组即可得到m的取值范围。

解释:

关键字是“R”!!

正因为是R,也就是对任意x∈R,此函数均有意义

也就是个恒成立问题!

根号下是个二次函数,根号下本来是需要非负数的,

而现在又要求恒成立,那只能让这个抛物线(二次函数的图像)恒非负,也就是二次项系数为正,然后再与x轴顶多一个交点!

m=0时,根号下为8,也符合!

这两点满足了,即可满足定义域为R!这就是关键点了!

希望能帮到你!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式