已知函数f﹙x﹚=lnx-1/2ax²+﹙1-a﹚x ﹙1﹚讨论f﹙x﹚的单调性

﹙2﹚设a>0,证明当0<x<1/a时,f﹙1/a+x﹚>f﹙1/a-x﹚求详解... ﹙2﹚设a>0,证明 当0<x<1/a时,f﹙1/a+x﹚>f﹙1/a-x﹚ 求详解 展开
132*****291
2014-03-16
知道答主
回答量:1
采纳率:0%
帮助的人:2.3万
展开全部
解:①函数f(x)的定义域为(0,+∞),
∵f(x)=lnx-ax2+(2-a)x,
∴f'(x)=
1
x
−2ax+2−a=
−2ax2+(2−a)x+1
x
=−
(2x+1)(ax−1)
x

(1)若a>0,则由f′(x)=0,得x=
1
a

当x∈(0,
1
a
)时,f′(x)>0,此时函数单调递增.
当x∈(
1
a
,+∞)时,f′(x)<0,此时函数单调递减.
(2)当a≤0时,f'(x)>0恒
成立,
因此f(x)在(0,+∞)单调递增.
②设函数g(x)=f(
1
a
+x)-f(
1
a
-x),则g(x)=ln(1+ax)-ln(1-ax)-2ax,
g′(x)=
a
1+ax
+
a
1−ax
−2a=
2a3x2
1−a2x2

当x∈(0,
1
a
)时,g′(x)>0,而g(0)=0,
∴g(x)>0,
故当0<x<
1
a
时,f(
1
a
+x)>f(
1
a
-x).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式