
设β是非齐次线性方程组Ax=b的一个解,
又a1,a2……ar是Ax=b的导出组Ax=0的基础解系,证β,a1+β,a2+β……ar+β是Ax=b的r+1个线性无关的解...
又a1,a2……ar是Ax=b的导出组Ax=0的基础解系,证β,a1+β,a2+β……ar+β是Ax=b的r+1个线性无关的解
展开
1个回答
展开全部
反证法,如果向量组α1,α2.……αn-r,β线性相关,则存在不全为零的数k1,k2,.……,kn-r,k使得
k1*a1+k2*a2+.……+kn-r*αn-r+k*β=0。如果k不等于0,那么移项过去,β可以由向量组α1,α2.……αn-r线性表示,因为α1,α2.……αn-r是对应齐次方程组的一个解的基础解系,那么β也是齐次方程组的一个解,这与题设β是非齐次线性方程组Ax=b的解向量相矛盾;那么只有k=0,那么存在不全为零的数k1,k2,.……,kn-r使得k1*a1+k2*a2+.……+kn-r*αn-r=0,因为α1,α2.……αn-r线性无关,所以对于不全为0的k1,k2,.……,kn-r,k1*a1+k2*a2+.……+kn-r*αn-r不等于0,等式不成立,与假设α1,α2.……αn-r,β线性相关矛盾,所以α1,α2.……αn-r,β线性无关。
k1*a1+k2*a2+.……+kn-r*αn-r+k*β=0。如果k不等于0,那么移项过去,β可以由向量组α1,α2.……αn-r线性表示,因为α1,α2.……αn-r是对应齐次方程组的一个解的基础解系,那么β也是齐次方程组的一个解,这与题设β是非齐次线性方程组Ax=b的解向量相矛盾;那么只有k=0,那么存在不全为零的数k1,k2,.……,kn-r使得k1*a1+k2*a2+.……+kn-r*αn-r=0,因为α1,α2.……αn-r线性无关,所以对于不全为0的k1,k2,.……,kn-r,k1*a1+k2*a2+.……+kn-r*αn-r不等于0,等式不成立,与假设α1,α2.……αn-r,β线性相关矛盾,所以α1,α2.……αn-r,β线性无关。
追问
貌似答非所问。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询