数列1+1/2+1/3+1/4+......1/n的前n项和为多少?

 我来答
匿名用户
推荐于2017-11-24
展开全部
准确值是求不出来的,但有一个近似值 利用“欧拉公式”
1+1/2+1/3+……+1/n
=ln(n)+C,(C为欧拉常数)
具体证明看下面的链接
欧拉常数近似值约为0.57721566490153286060651209
这道题用数列的方法是算不出来的
Sn=1+1/2+1/3+…+1/n
>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)
=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]
=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)
匿名用户
2013-12-06
展开全部
此数列无具体求和公式。在高等数学里叫做收敛级数,即前N项的和趋于无极限。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式