已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和.(Ⅰ)试求{an}的通项公式;(Ⅱ)若
已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和.(Ⅰ)试求{an}的通项公式;(Ⅱ)若数列{bn}满足:{bn}=nan,试求{bn}...
已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和.(Ⅰ)试求{an}的通项公式;(Ⅱ)若数列{bn}满足:{bn}=nan,试求{bn}的前n项和公式Tn;(III)设cn=11+an+11?an+1,数列{cn}的前n项和为Pn,求证:Pn>2n-12.
展开
展开全部
(Ⅰ)Sn=1-an①
∴Sn+1=1-an+1②
②-①an+1=-an+1+an
∴an=1=
an(n∈N*)又n=1时,a1=1-a1
∴a1=
,an=
?(
)n?1=(
)n(n∈N*)
(Ⅱ)bn=
=n?2n,(n∈N*)
∴Tn=1×2+2×22+3×23+…+n×2n③
2Tn=1×22+2×23+3×24+…+n×2n+1④
③-④得-Tn=2+22+23+…+2n-n×2n+1=
-n×2n+1
整理得:Tn=(n-1)×2n+1=2,(n∈N*)
(III)∵cn=
+
=
+
=
+
=1-
+1+
=2-(
-
)
又
-
=
=
<
=
<
∴Pn>2n-(
+
+
+…+
)=2n-
=2n-
+
>2n-
,(n∈N*)
∴Sn+1=1-an+1②
②-①an+1=-an+1+an
∴an=1=
1 |
2 |
∴a1=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(Ⅱ)bn=
n |
an |
∴Tn=1×2+2×22+3×23+…+n×2n③
2Tn=1×22+2×23+3×24+…+n×2n+1④
③-④得-Tn=2+22+23+…+2n-n×2n+1=
2(1?2n) |
1?2 |
整理得:Tn=(n-1)×2n+1=2,(n∈N*)
(III)∵cn=
1 |
1+an |
1 |
1?an+1 |
1 | ||
1+ (
|
1 | ||
1? (
|
2n |
2n+1 |
2n+1 |
2n+1?1 |
1 |
2n+1 |
1 |
2n+1?1 |
1 |
2n+1 |
1 |
2n+1?1 |
又
1 |
2n+1 |
1 |
2n+1?1 |
2n+1?1?(2n+1) |
(2n+1)(2n+1?1) |
2n?2 |
2n+1+2n?1 |
2n |
2n+1+2n?1 |
1 | ||
2n+1+1?
|
1 |
2n+1 |
∴Pn>2n-(
1 |
22 |
1 |
23 |
1 |
24 |
1 |
2n+1 |
| ||||
1?
|
1 |
2 |
1 |
2n+1 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询