1/(1+2x)(1+x^2)的不定积分
3个回答
推荐于2016-06-07 · 知道合伙人教育行家
关注
展开全部
令1/[(1 + 2x)(1 + x^2)] = A/(1 + 2x) + (Bx + C)/(1 + x^2)
则1 = A(1 + x^2) + (Bx + C)(1 + 2x)
1 = (A + 2B)x^2 + (B + 2C)x + (A + C)
A + 2B = 0、B + 2C = 0、A + C = 1
解得A = 4/5、B = - 2/5、C = 1/5
原式 = (4/5)∫ dx/(1 + 2x) - (2/5)∫ x/(1 + x^2) dx + (1/5)∫ dx/(1 + x^2)
= (4/5)(1/2)∫ d(1 + 2x)/(1 + 2x) - (2/5)(1/2)∫ d(1 + x^2)/(1 + x^2) + (1/5)∫ dx/(1 + x^2)
= (2/5)ln|1 + 2x| - (1/5)ln(1 + x^2) + (1/5)arctan(x) + C
则1 = A(1 + x^2) + (Bx + C)(1 + 2x)
1 = (A + 2B)x^2 + (B + 2C)x + (A + C)
A + 2B = 0、B + 2C = 0、A + C = 1
解得A = 4/5、B = - 2/5、C = 1/5
原式 = (4/5)∫ dx/(1 + 2x) - (2/5)∫ x/(1 + x^2) dx + (1/5)∫ dx/(1 + x^2)
= (4/5)(1/2)∫ d(1 + 2x)/(1 + 2x) - (2/5)(1/2)∫ d(1 + x^2)/(1 + x^2) + (1/5)∫ dx/(1 + x^2)
= (2/5)ln|1 + 2x| - (1/5)ln(1 + x^2) + (1/5)arctan(x) + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询