对稀疏矩阵进行压缩存储的目的是什么?
对稀疏矩阵进行压缩存储目的是节省存储空间。
存储矩阵的一般方法是采用二维数组,其优点是可以随机地访问每一个元素,因而能够较容易地实现矩阵的各种运算。
但对于稀疏矩阵而言,若用二维数组来表示,会重复存储了很多个0了,浪费空间,而且要花费时间来进行零元素的无效计算。所以必须考虑对稀疏矩阵进行压缩存储。
扩展资料
优点
稀疏矩阵的计算速度更快,因为MATLAB只对非零元素进行操作,这是稀疏矩阵的一个突出的优点。假设矩阵A,B中的矩阵一样,计算2*A需要一百万次的浮点运算,而计算2*B只需要2000次浮点运算。
因为MATLAB不能自动创建稀疏矩阵,所以要用特殊的命令来得到稀疏矩阵。算术和逻辑运算都适用于稀疏矩阵。对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节。
对稀疏矩阵压缩存储的目的是:C节省存储空间和D降低预算时间复杂度,如果是单选题,那么应该选C节省存储空间。
矩阵中非零元素的个数远远小于矩阵元素的总数,并且非零元素的分布没有规律,则称该矩阵为稀疏矩阵(sparse matrix);与之相区别的是,如果非零元素的分布存在规律(如上三角矩阵、下三角矩阵、对角矩阵),则称该矩阵为特殊矩阵。
扩展资料:
稀疏矩阵算法是以稀疏矩阵作为核心数据结构的算法。与稠密矩阵算法相比,稀疏矩阵算法的最大特点是通过只存储和处理非零元素从而大幅度降低存储空间需求以及计算复杂度,代价则是必须使用专门的稀疏矩阵压缩存储数据结构,因而在计算过程中引入了大量的离散间接寻址操作。
参考资料来源:百度百科-稀疏矩阵算法