椭圆C:x2/a2+y2/b2=1(a>b>0)的两个焦点F1(-c,0),F2(c,0),M是椭圆C上一点,且满足

椭圆C:x2/a2+y2/b2=1(a>b>0)的两个焦点F1(-c,0)、F2(c,0),M是椭圆C上一点,且满足角F1MF2=π/3(1)求椭圆的离心率e的取值范围(... 椭圆C:x2/a2+y2/b2=1(a>b>0)的两个焦点F1(-c,0)、F2(c,0),M是椭圆C上一点,且满足角F1MF2=π/3(1)求椭圆的离心率e的取值范围(2)当离心率e取得最小值时,点N(0,3根号3)到椭圆上的点最远距离为4根号3,求此时椭圆C的方程(3)设O为坐标原点,P是椭圆C上的一个动点,试求t=(绝对值PF1-PF2绝对值/绝对值OP的取值范围 展开
匿名用户
2013-11-02
展开全部
答案为:√2/2 =<e<1 ,椭圆方程为:x^2/32+y^2/16=1
(1)
F1M*F2M=0,说明向量F1M⊥F2M,则
F1M^2+F2M^2=4c^2
设点为M(x,y)则
(x-c)^2+y^2+(x+c)^2+y^2=4c^2
即x^2+y^2=c^2
又点在椭圆上故:
x^2/a^2+y^2/b^2=1,b^2x^2+a^2y^2=a^2b^2
两式联立,消去y:
b^2x^2+a^2(c^2-x^2)=a^2b^2
整理得:
c^2x^2=a^2(c^2-b^2)
x^2=a^2(c^2-b^2)/c^2=a^2(2c^2-a^2)/c^2
因为点M在椭圆上,所以0≤|x|≤a,
即0≤x^2≤a^2.
∴0≤a^2(2c^2-a^2)/c^2≤a^2
即2c^2-a^2 ≥0,且(2c^2-a^2)/c^2≤1
2c^2 ≥a^2,且(2c^2-a^2)/c^2≤1
e^2≥1/2,且2-1/e^2≤1
1/2≤e^2≤1
所以√2/2≤e<1.
【另法】
可以设椭圆上的一点M为(x,y),又因M在椭圆上,所以可以把y换成含有x的代数式,即M(x,[b√(a^2-x^2)]/a)。
所以F1M=(x+c,[b√(a^2-x^2)]/a);
MF2=(c-x,-[b√(a^2-x^2)]/a);
又因根据条件:F1M*F2M=0 。
所以即:(x+c)*(c-x)-{[b√(a^2-x^2)]/a*[b√(a^2-x^2)]/a}=0(向量知识)
划简出来得:x^2=(a^2*c^2-a^2*b^2)/(a^2+b^2)
又因M在椭圆上,所以x有取值范围,即-a=<x=<a,
所以0=<x^2=<a^2
所以即:0=<(a^2*c^2-a^2*b^2)/(a^2+b^2)=<a^2
先算(a^2*c^2-a^2*b^2)/(a^2+b^2)>=0
在划简过程中把b^2换成a^2-c^2(椭圆性质)
最后得:2c^2-a^2>=0
同除a^2,为2*(c/a)^2-1>=0
即e^2>=1/2,所以e>=√2/2,e<=-√2/2(舍去)
再算(a^2*c^2-a^2*b^2)/(a^2+b^2)=<a^2
同样在划简过程中把b^2换成a^2-c^2
最后算的e^2<=1 ,即0<e<1(椭圆e是在(0,1))
所以e的范围取交集,即√2/2 =<e<1
(2)
当离心率取得最小值时即 e=√x²/32+y²/16=1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式