
线性代数施密特正交化(我又想了下,请确认)
1个回答
展开全部
之前这个问题,我又想了下,请您看看是否理解正确;(注:非实对称矩阵,指的是在实数域中,那些不是实对称矩阵的一般方阵;)
1.n个线性无关的向量,当然是可以用施密特正交化的;注,这里仅指施密特正交化,不涉及特征向量和构造正交矩阵的问题;
2.那为啥书上只说了实对称矩阵可以用正交矩阵化为对角阵;那有n个线性无关特征向量的一般方阵能否施密特正交化构造正交矩阵呢? 我觉得答案是“不一定”;理由:有n个线性无关特征向量的一般方阵,这n个线性无关的特征向量当然可以史密特正交,但对应不同特征值的特征向量之间正交后,所得的向量“有可能”不再是原矩阵的特征向量了,故“不一定”能施密特正交化找到正交矩阵;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询