数学大神请进!数学归纳法问题! 第一数学归纳法和第二数学归纳法有什么区别?请大神详细说明!比如适用

数学大神请进!数学归纳法问题!第一数学归纳法和第二数学归纳法有什么区别?请大神详细说明!比如适用场合,条件强度,结论强度等等,最好有简单例子,嘿嘿,多谢大神喽!小女子在这... 数学大神请进!数学归纳法问题!
第一数学归纳法和第二数学归纳法有什么区别?请大神详细说明!比如适用场合,条件强度,结论强度等等,最好有简单例子,嘿嘿,多谢大神喽!小女子在这谢过大神了!O(∩_∩)O
展开
 我来答
earth神的传说
2015-07-06 · TA获得超过466个赞
知道小有建树答主
回答量:217
采纳率:0%
帮助的人:92.2万
展开全部
数学归纳法是一种重要的论证方法,本文从最小数原理出发,对它的第二种形式即第二数学归纳法进行粗略的探讨数学归纳法是一种重要的论证方法。它们通常所说的“数学归纳法”大多是指它的第一种形式而言,本文想从最小数原理出发,对它的第二种形式即第二数学归纳法进行粗略的探讨,旨在加深对数学归纳法的认识。】
第二数学归纳法原理是设有一个与正整数n有关的命题,如果:
(1)当n=1时,命题成立;
(2)假设当n≤k(k∈N)时,命题成立,由此可推得当n=k+1时,命题也成立。
那么根据①②可得,命题对于一切正整数n来说都成立。

用反证法证明。
假设命题不是对一切自然数都成立。命N表示使命题不成立的自然数所成的集合,显然N非空,于是,由最小数原理N中必有最小数m,那么m≠1,否则将与(1)矛盾。所以m-1是一个自然数。但m是N中的最小数,所以m-1能使命题成立。这就是说,命题对于一切≤m-1自然数都成立,根据(2)可知,m也能使命题成立,这与m是使命题不成立的自然数集N中的最小数矛盾。因此定理获证。
当然,定理2中的(1),也可以换成n等于某一整数k。
对于证明过程的第一个步骤即n=1(或某个整数a)的情形无需多说,只需要用n=1(或某个整数a)直接验证一下,即可断定欲证之命题的真伪。所以关键在于第二个步骤,即由n≤k到n=k+1的验证过程。事实上,我们不难从例1的第二个步骤的论证过程中发现,证明等式在n=k+1时成立是利用了假设条件;等式在n=k及n=k-1时均需成立。同样地,例2也不例外,只是形式的把n=k及n=k-1分别代换成了n=k-1和n=k-2。然而例3就不同了,第二个步骤的论证过程,是把论证命题在n=k+1时的成立问题转化为验证命题在n=k-2+1时的成立问题。换言之,使命题在n=k+1成立的必要条件是命题在n=k-2+1时成立,根据1的取值范围,而命题在n=k-k+1互时成立的实质是命题对一切≤k的自然数n来说都成立。这个条件不是别的,正是第二个步骤中的归纳假设。以上分析表明,假如论证命在n=k+1时的真伪时,必须以n取不大于k的两个或两个以上乃至全部的自然数时命题的真伪为其论证的依据,则一般选用第二数学归纳法进行论证。之所以这样,其根本原则在于第二数学归纳法的归纳假设的要求较之第一数学归纳法更强,不仅要求命题在n=k时成立,而且还要求命题对于一切小于k的自然数来说都成立,反过来,能用第一数学归纳法来论证的数学命题,一定也能用第二数学归纳进行证明,这一点是不难理解的。不过一般说来,没有任何必要这样做。
第二数学归纳法和第一数学归纳法一样,也是数学归纳法的一种表达形式,而且可以证明第二数学归纳法和第一数学归纳法是等价的,之所以采用不同的表达形式,旨在更便于我们应用。
追问
看得出来复制粘贴的手法很纯熟-_-b
毕竟778
2017-12-03 · 超过18用户采纳过TA的回答
知道答主
回答量:85
采纳率:0%
帮助的人:43.7万
引用earth神的传说的回答:
数学归纳法是一种重要的论证方法,本文从最小数原理出发,对它的第二种形式即第二数学归纳法进行粗略的探讨数学归纳法是一种重要的论证方法。它们通常所说的“数学归纳法”大多是指它的第一种形式而言,本文想从最小数原理出发,对它的第二种形式即第二数学归纳法进行粗略的探讨,旨在加深对数学归纳法的认识。】
第二数学归纳法原理是设有一个与正整数n有关的命题,如果:
(1)当n=1时,命题成立;
(2)假设当n≤k(k∈N)时,命题成立,由此可推得当n=k+1时,命题也成立。
那么根据①②可得,命题对于一切正整数n来说都成立。

用反证法证明。
假设命题不是对一切自然数都成立。命N表示使命题不成立的自然数所成的集合,显然N非空,于是,由最小数原理N中必有最小数m,那么m≠1,否则将与(1)矛盾。所以m-1是一个自然数。但m是N中的最小数,所以m-1能使命题成立。这就是说,命题对于一切≤m-1自然数都成立,根据(2)可知,m也能使命题成立,这与m是使命题不成立的自然数集N中的最小数矛盾。因此定理获证。
当然,定理2中的(1),也可以换成n等于某一整数k。
对于证明过程的第一个步骤即n=1(或某个整数a)的情形无需多说,只需要用n=1(或某个整数a)直接验证一下,即可断定欲证之命题的真伪。所以关键在于第二个步骤,即由n≤k到n=k+1的验证过程。事实上,我们不难从例1的第二个步骤的论证过程中发现,证明等式在n=k+1时成立是利用了假设条件;等式在n=k及n=k-1时均需成立。同样地,例2也不例外,只是形式的把n=k及n=k-1分别代换成了n=k-1和n=k-2。然而例3就不同了,第二个步骤的论证过程,是把论证命题在n=k+1时的成立问题转化为验证命题在n=k-2+1时的成立问题。换言之,使命题在n=k+1成立的必要条件是命题在n=k-2+1时成立,根据1的取值范围,而命题在n=k-k+1互时成立的实质是命题对一切≤k的自然数n来说都成立。这个条件不是别的,正是第二个步骤中的归纳假设。以上分析表明,假如论证命在n=k+1时的真伪时,必须以n取不大于k的两个或两个以上乃至全部的自然数时命题的真伪为其论证的依据,则一般选用第二数学归纳法进行论证。之所以这样,其根本原则在于第二数学归纳法的归纳假设的要求较之第一数学归纳法更强,不仅要求命题在n=k时成立,而且还要求命题对于一切小于k的自然数来说都成立,反过来,能用第一数学归纳法来论证的数学命题,一定也能用第二数学归纳进行证明,这一点是不难理解的。不过一般说来,没有任何必要这样做。
第二数学归纳法和第一数学归纳法一样,也是数学归纳法的一种表达形式,而且可以证明第二数学归纳法和第一数学归纳法是等价的,之所以采用不同的表达形式,旨在更便于我们应用。
展开全部
第一归纳法是第二归纳法的特殊形式。凡事能用第一归纳法的,都可以使用第二归纳法。但是第二归纳法可以证明的,第一归纳法并不一定能证明
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
来自木兰山武艺高强的荠菜
2017-02-02
知道答主
回答量:31
采纳率:0%
帮助的人:8.2万
展开全部
其实我也想问这个问题,不过第二数学归纳法的条件更强,而且能用第一一定可以用第二。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
来自马岭充满热情的雷神
2015-07-06
知道答主
回答量:21
采纳率:0%
帮助的人:2.5万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
手机用户91329
2015-07-06
知道答主
回答量:61
采纳率:0%
帮助的人:7.3万
展开全部
一二三
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式