大学学线性代数到底有什么用
②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分;
③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的;
④
随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。
但是,一般不搞基础研究的人是用不上的。
大学学线性代数到底有什么用?对于这个问题,我可以很明确的告诉你,用途非常大和广,但是他是底层逻辑,平时接触不到,但是我们也是有必要学习他,下面介绍他的各个不同领域的应用。
在电子和软件工程中的应用:由于线性代数是研究线性网络的主要工具,电路分析、线性信号系统分析、数字滤波器分析和设计需要线生成;在设计集成电路时,处理数百万个集合管的仿真软件也需要依赖线性方程组的方法;对于光电和射频工程来说,电磁场和光波导的分析就是矢量场的分析。
运筹学中的应用:运筹学的一个重要课题是线性规划。许多重要的管理决策都是基于线性规划模型做出的。线性规划需要大量的线性代数知识。如果你掌握了线性代数和线性规划的知识,你就可以把现实生活中的大量问题抽象成线性规划问题并得到最优解。例如,航空运输业使用线性规划来安排航班、监控航班以及机场维护和运营,这些都是实际应用。
在工业生产和经济管理中的应用:行列式应该是工业生产和经济管理中应用最广泛的一种。人们可以用行列式来解决工程中的一些实际问题。
其他应用:在石油勘探中,由勘探设备获得的大量数据所满足的数千个方程需要你的线生成知识来求解;在餐饮业中,我们还需要解线性方程组来构建营养饮食。
另一个例子是气象学。为了进行天气预报,有时需要根据多种因素最终归结为求解线性方程组。当然,这类线性方程组不能用手工求解,只能用计算机求解;以及线性方程组在国民经济中的应用。为了预测经济形势,投入产出经济数学模型往往简化为求解一组线性方程组。