设z=z(x,y)是由方程e^(-xy)+2z-e^z=2确定 求dz|(x=2...
设z=z(x,y)是由方程e^(-xy)+2z-e^z=2确定求dz|(x=2,y=-1/2)...
设z=z(x,y)是由方程e^(-xy)+2z-e^z=2确定 求dz|(x=2,y=-1/2)
展开
1个回答
展开全部
对方程e^(-xy)+2z-e^z=2两边微分,
有:e^(-xy)*d(-xy)
+
2*dz
-
e^z*dz
=
0
-e^(-xy)*(x*dy
+
y*dx)
+
2*dz
-
e^z*dz
=
0
移项,得:(e^z
-
2)*dz
=
-y*e^(-xy)*dx
-
x*e^(-xy)*dy
当x=2,y=-1/2时,代入e^(-xy)+2z-e^z=2,得:z
=
1
所以dz|(x=2,y=-1/2)
=
[-y*e^(-xy)*dx
-
x*e^(-xy)*dy]/(e^z
-
2)(其中x=2,y=-1/2,z=1)
所以dz|(x=2,y=-1/2)
=
e*(1/2
*
dx
-
2*dy)/(e
-
2)
有:e^(-xy)*d(-xy)
+
2*dz
-
e^z*dz
=
0
-e^(-xy)*(x*dy
+
y*dx)
+
2*dz
-
e^z*dz
=
0
移项,得:(e^z
-
2)*dz
=
-y*e^(-xy)*dx
-
x*e^(-xy)*dy
当x=2,y=-1/2时,代入e^(-xy)+2z-e^z=2,得:z
=
1
所以dz|(x=2,y=-1/2)
=
[-y*e^(-xy)*dx
-
x*e^(-xy)*dy]/(e^z
-
2)(其中x=2,y=-1/2,z=1)
所以dz|(x=2,y=-1/2)
=
e*(1/2
*
dx
-
2*dy)/(e
-
2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询