2个回答
展开全部
法1. I1 = ∫dx/[sin²(x/2)cos²(x/2)] = ∫4dx/sin²x = -4cotx + C
法 2. I2 = ∫dx/[sin²(x/2)cos²(x/2)] = ∫[sin²(x/2)+cos²(x/2)]dx/[sin²(x/2)cos²(x/2)]
= 2∫[1/cos²(x/2)+1/sin²(x/2)]d(x/2) = 2[tan(x/2)-cot(x/2)] + C
二者一致 :
-4cotx = -4/tanx = -4[1-tan^2(x/2)]/[2tan(x/2)] = 2[tan(x/2)-cot(x/2)]
法 2. I2 = ∫dx/[sin²(x/2)cos²(x/2)] = ∫[sin²(x/2)+cos²(x/2)]dx/[sin²(x/2)cos²(x/2)]
= 2∫[1/cos²(x/2)+1/sin²(x/2)]d(x/2) = 2[tan(x/2)-cot(x/2)] + C
二者一致 :
-4cotx = -4/tanx = -4[1-tan^2(x/2)]/[2tan(x/2)] = 2[tan(x/2)-cot(x/2)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询