方差与样本方差的区别?为什么方差是除以N,样本方差是除以N-1
1、求法不同:
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。样本方差是先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数。
2、用途不同:
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度,在许多实际问题中,研究方差即偏离程度有着重要意义,可以衡量源数据和期望值相差的度量值。样本方差用来表示一列数的变异程度,可以对所给总体方差的一个无偏估计。
因为除以N-1才是无偏的,即收敛于该随机变量的方差;除以N是有偏的。n-1用于样本协方差和样本标准偏差(方差平方根)。
平方根是一个凹函数,因此引入负偏差(由Jensen不等式),这取决于分布,因此校正样本标准偏差(使用贝塞尔校正)有偏差。 标准偏差的无偏估计是一个技术上涉及的问题,尽管对于使用术语n-1.5的正态分布,形成无偏估计。
扩展资料:
方差的性质
1、设C是常数,则D(C)=0;
2、设X是随机变量,C是常数,则有
3、设 X 与 Y 是两个随机变量,则
其中协方差
特别的,当X,Y是两个不相关的随机变量则
此性质可以推广到有限多个两两不相关的随机变量之和的情况。
4、D(X)=0的充分必要条件是X以概率1取常数E(X),即
(当且仅当X取常数值E(X)时的概率为1时,D(X)=0。)
注:不能得出X恒等于常数,当x是连续的时候X可以在任意有限个点取不等于常数c的值。
5、D(aX+bY)=a2DX+b2DY+2abCov(X,Y)。
当该样本集的样本数N趋于正无穷时,可以证明除以N-1才是无偏的,即收敛于该随机变量的方差;除以N是有偏的。
因此采用无偏估计时除以N-1,而不是除以N。
2.仅研究某样本集内样本数据的分散情况,除以N即可,这是方差原始的定义。
N-1算出来的是无偏的,通过样本方差估算总体的方差。