一道级数的证明题

求证级数1/n2^n=ln2(等式前有一个求和符号,并从1到无穷)... 求证级数1/n2^n=ln2(等式前有一个求和符号,并从1到无穷) 展开
hmlhmm
2010-01-27 · TA获得超过2105个赞
知道小有建树答主
回答量:536
采纳率:0%
帮助的人:0
展开全部
为了求出级数的级数和,我们从幂级数 S(x)= ∑x^n/n (n 从 1 到 +∞,|x|<1)着手进行计算,显然 S(1/2)= ∑1/n2^n 。对 S(x)进行求导运算得 S'(x)= ∑x^n (n 从 0 到 +∞,|x|<1) = 1/(1-x)(此处是等比级数的求和)。然后将 S'= 1/(1-x)进行积分得 S(x)= - ln(1-x)+ C (C为任意常数),由 S(x)= 0 可得常数 C = 0 ,亦即 S(x)= -ln(1-x)。然后将 x = 1/2 带入式中得 ∑1/n2^n = S(1/2)= -ln(1-1/2)= -ln(1/2)= ln2 ,到此问题解决。
百度网友e6afe9c
2010-01-26
知道答主
回答量:17
采纳率:0%
帮助的人:2.5万
展开全部
faw
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式