计算∫∫∫(x^2+y^2)dxdydz Ω是由曲面z=x^2+y^2及平面z=4所围成的闭区域
计算∫∫∫(x^2+y^2)dxdydzΩ是由曲面z=x^2+y^2及平面z=4所围成的闭区域在线等...
计算∫∫∫(x^2+y^2)dxdydz Ω是由曲面z=x^2+y^2及平面z=4所围成的闭区域
在线等 展开
在线等 展开
展开全部
x=rcosθ,y=rsinθ
原积分=∫∫∫r^2 rdrdθdz
=∫(0->2π)dθ ∫(0->2) r^3dr ∫(r^2->4)dz
=32π/3
扩展资料
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
牛顿-莱布尼茨公式
定积分与不定积分看起来风马牛不相及,但银耐携是由于一个数学上重要的理论的亩并支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,锋伏这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询