如图:在△ABC中,AB=BC=AC,AE=CD,AD与BE相交于点P,BQ⊥AD于Q.求证:①△ADC≌△BEA;②BP=2PQ

如图:在△ABC中,AB=BC=AC,AE=CD,AD与BE相交于点P,BQ⊥AD于Q.求证:①△ADC≌△BEA;②BP=2PQ.... 如图:在△ABC中,AB=BC=AC,AE=CD,AD与BE相交于点P,BQ⊥AD于Q.求证:①△ADC≌△BEA;②BP=2PQ. 展开
 我来答
菠萝391
2014-11-23 · 超过57用户采纳过TA的回答
知道答主
回答量:119
采纳率:100%
帮助的人:49.9万
展开全部
解答:证明:(1)∵AB=BC=AC,
∴△ABC是等边三角形.
∴∠BAC=∠C=60°.
∵AB=AC,AE=CD,
∴△ADC≌△BEA.

(2)∵△ADC≌△BEA,
∴∠ABE=∠CAD.
∵∠CAD+∠BAD=60°,
∴∠ABE+∠BAD=60°.
∴∠BPQ=60°.
∵BQ⊥AD,
∴∠PBQ=30°.
∴BP=2PQ.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式